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Abstract

The new versions of dissipativity-like concepts are intro-
duced. It is shown that sequential quasidissipativity for
several supply rates is equivalent to that with one supply
rate which is their convex combination. The key point
of the proof is a new "S-procedure" result for averaged
integral functionals.

1 Introduction

The stability analysis of general nonlinear systems is one
of the central problems in automatic control theory. The
pretty general approach consolidating the ideas of sys-
tem theory ( Lyapunov and input-output methods) with
the fundamental physics concept dissipation of energy was
suggested by J.C.Willems [1]. The notion of dissipative
system play the central role in this approach. The term
"dissipative" is herein taken to mean that system absorb
energy from the environment in some abstract sense. Such
"dissipativity" property implies the existence of the so
called storage function which can be interpreted as en-
ergy stored in system. In turn storage function plays the
role of Lyapunov function of the system, and under some
further conditions the stability properties of such systems
can be demonstrated. In [4] the new class of systems was
discribed including the dissipative systems as a special
case. The systems of this class were called quasidissipa-
tive. Compared to dissipative systems, the quasidissipa-
tive systems generally satisfy weaker restrictions on energy
transferred to the environment. It was shown in [4] that
under some mild additional conditions the trajectories of
such systems are bounded in some sense.

In this paper we further extend the concept of qua-
sidissipativity requiring dissipation inequality to be valid
only along some sequence of time instants fTjg; j =

1; 2; : : : ; Tj ! 1 when j ! 1. This property is intro-
duced in Section 2 and called sequential quasidissipativ-

ity. In Section 3 the existence of storage function for se-
quentially quasidissipative systems is stated. In Section
5 we establish that for di�erential systems having con-
vergent trajectories sequential quasidissipativity for sev-
eral supply rates !i(�); i = 1; : : : ; N: is equivalent to that
with one supply rate !(�) which is convex combination of
!i; i = 1; : : : ; N: The key point of the proof is a new "S-
procedure" result for averaged integral functionals which
is formulated in Section 4.

2 Quasidissipative systems

We will consider the dynamical systems in state-space
form determined on appropriate set T of time instants.
The system is de�ned as

P
m = fU;U ; Y;Y; X; '; rgwhere

U, Y, X - abstract sets called input range, output
range and state space respectively,

U = fu: T ! Ug - input signal space,

Y = fy: T ! Yg - output signal space,

': T � T � X � U ! X - state transition function,

r: T � X � U ! Y - readout function.

It is assumed that the state transition function and
readout function satysfy the usual axioms [2, 3].

FollowingWillems [1] and others, we de�ne a function
w:U � Y � R ! R, which is called supply rate. We as-
sume that w satisfy reasonable conditions guaranteed the

existence of integral
tR
t0

!(u(s); y(s))ds for any t0; t 2 � .

De�nition 1 [4, 5]. The system with initial state
x(0) = x0 is called weakly quasidissipative with respect
to supply rate w if 9�; � � 0 s.t. 8t � 0, 8u 2 U

tZ
0

!(u(s); y(s))ds + �t+ � � 0 (1)

whenever x(0) = x0. If the inequality (1) is true with



� = 0 then system is called quasidissipative.

We need some modi�ed version of above de�nition.

De�nition 2. The system with initial state x(0) =
x0 is called sequentially quasidissipative with respect to
supply rate w and if 9� � 0 and there exist a sequence
of time instants fTjg; j = 1; 2; : : : ; limj!1 Tj = +1 s.t.
8u 2 U and 8j

TjZ
0

!(u(s); y(s))ds + �Tj � 0 (2)

whenever x(0) = x0.

The introduced concept is close to (t0; T )-dissipativity
de�ned in [14]. We may introduce another de�nition for
sequential quasidissipativity as follows.

De�nition 2'. The system with initial state x(0) =
x0 is called sequentially quasidissipative with respect to
supply rate w if 9� � 0 and there exist a sequence of
time instants fTj0g; j = 1; 2; : : :; limj0!1 Tj0 = +1 s.t.
8u 2 U and 8j0

lim
j0!1

1

Tj0

TjZ
0

!(u(s); y(s))ds � �� (3)

(limit in (3) may be �nite or in�nite). It can be shown
that De�nitions 2 and 2' are equivalent but for the same
system the sequence fTjg may be di�erent from fTj0g.

De�nition 3. Let f!i(u; y)g; i = 1; 2; : : : ; n be a set
of supply rates. System

P
m is called sequentially qua-

sidissipative with respect to supply rates !i; i = 1; : : : ; N ,
if there exist nonnegative constants �i; i = 1; : : : ; N and
there exist a sequence of time instants fTjg; j = 1; 2; : : :,
limj!1 Tj = +1, s.t. 8u 2 U and 8j the inequality

TjZ
0

!i(u(s); y(s))ds + �iTj � 0 (4)

is valid for some i 2 f1; 2; : : :; ng.

3 Storage functions for quasidis-

sipative and sequentially qua-

sidissipative systems

We will consider the function V :X � � ! R de�ned by
the expression

V (x0; 0) = � inf
u2U;t�t0
x(0)=x0

� tZ
0

!(u(s); y(s))ds + �t

�
: (5)

De�nition 4. The pair (x1; t1) is called reachable from
(x0; 0) if 9u 2 U , s.t.

'(t1; 0; x0; u) = x1: (6)

In [5] the following results about existence of storage
function was obtained.

Theorem 1. Let the system with initial state x(0) = x0

be weakly quasidissipative, and (x1; t1) be reachable from
(x0; 0). Then

V (x1; t1) � V (x0; 0) +

t1Z
0

!(u(s); y(s))ds + �t1: (7)

for any u 2 U satisfying the condition (6).

The analog of function (5) for sequentially quasidissi-
pative systems is de�ned by the expression

V (x0; 0) = � inf
u2U;j=0;1;:::

x(0)=x0

� TjZ
0

!(u(s); y(s))ds+�Tj

�
; (8)

where T0 = 0.

The following theorem is the analog of Theorem 1 for
sequentially quasidissipative systems.

Theorem 2. Let the system with initial state x(0) = x0

be weakly sequentially quasidissipative, and (x1; Tk) be
reachable from (x0; 0), where Tk is the element of sequence
fTjg from the de�nition 2. Then

V (x1; Tk) � V (x0; 0) +

TkZ
0

!(u(s); y(s))ds + �Tk: (9)

for any u 2 U satisfying the condition (6).

Proof. We can write

inf
u2Ue;Tj�0

0
@ TjZ

0

!(u(s); y(s))ds + �Tj

1
A

� inf
u2Ue;0�k�j

'(Tk;0;x0;u)=x1

0
@ TjZ

0

!(u(s); y(s))dt + �Tj

1
A :

Taking into account that the trajectories of dynamical sys-
tem on interval [Tk; Tj] depend only on x(Tk) and u[Tk;Tj ]

(but not on u[0;Tk]) we can write

inf
u2Ue;0�k�j

'(Tk;0;x0;u)=x1

0
@ TjZ

0

!(u(s); y(s))dt + �Tj

1
A

= inf
u2Ue;

'(Tk;0;x0;u)=x1

0
@ TkZ

0

!(u(s); y(s))ds + �Tk

1
A

+ inf
u2Ue;j�k
x(Tk)=x1

0
@ TjZ
Tk

!(u(s); y(s))ds + �(Tj � Tk)

1
A
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�

TkZ
0

!(u(s); y(s))ds + �Tk

+ inf
u2Ue;j�k
x(Tk)=x1

0
@ TjZ
Tk

!(u(s); y(s))ds + �(Tj � Tk)

1
A :

Combining in terms of (8) we obtain

�V (x0; 0) �

TkZ
0

!(u(s); y(s))ds + �Tk � V (x1; Tk):

The statement of Theorem 2 follows immediately.

Note, that in the case � = 0 the expressions (7) and
(9) turn into well-known dissipation inequality for dissipa-
tive systems ( see for example [1, 2, 3]). Hence, the state-
ments of Theorems 1 and 2 allow to interpret the functions
(5) and (8) as storage functions for quasidissipative and
sequentially quasidissipative systems respectively.

4 S-procedure for averaged inte-

gral functionals

The important role in the modern theory of nonlin-
ear and robust control is played by a trick which
was �rst used in absolute stability theory in 1960s
and was called S-procedure by V.A.Yakubovich. Let
'1(x); '2(x); : : : ; 'n(x) be real functionals on some set X
and the following condition is valid:

'1(x) � 0 for all x 2 X

such that '2(x) < 0; : : : ; 'n(x) < 0 (10)

De�nition 6. We say that S-procedure for function-
als '1(x); '2(x); : : : ; 'n(x) is loseless if (10) implies the
following condition:

9�i � 0;

nX
i=1

�i > 0;

8x 2 X

nX
i=1

�i'i(x) � 0: (11)

It is obvious that (11) implies (10). In case when S-
procedure is loseless statements (10) and (11) are equiva-
lent. The loselessness of S-procedure is closely connected
with duality relations in some nonlinear extremal prob-
lem. It is well known that duality theorem in nonlin-
ear programming is valid for convex extremal problems.
However applications in absolute stability, robust control

and optimal control involve functionals which are not con-
vex. Also when we use concepts of dissipativity and qua-
sidissipativity for investigation of the nonlinear systems
the associated integral functionals are not convex. There-
fore we need conditions of loselessness of S-procedure for
several nonconvex functionals. Note that S-procedure is
loseless for arbitrary two quadratic functionals de�ned on
arbitrary set [6]. However for more than two function-
als this statement is not true in general. First result
on loselessness of S-procedure for more than two convex
functionals was established in [9, 10] for the case when
'1(x); '2(x); '3(x) are three quadratic functionals de�ned
on complex linear space. The important results about
loselessness of S-procedure for integral quadratic function-
als were obtained recently in [12]. Below the new theorem
about S-procedure is given appropriate for investigation of
quasidissipativity of systems with several supply rates.

Consider dynamical system

_x = f(x; u); y = h(x; u) (12)

where x 2 R
n, u 2 R

m, y 2 R
l and f(�), h(�) are smooth

vector-functions of corresponding dimensions. Let U be
a set of piecewise continious bounded functions on [0;1)
with value in R

m. Suppose system (12) for all u(�) 2 U

has the following properties.

Property A (convergence property, see [11]): for any
u(�) 2 U there exist unique bounded on [0;1) solution
xu(t) to (12) which is asymptotically stable: any other
solution x(t) tends to xu(t):

lim
t!1

kx(t)� xu(t)k = 0: (13)

Suppose also that convergence in (13) is uniform over any
bounded set of initial conditions of (12).

Let gi(x; u); j = 1; : : : ; l be real functions on R
n�R

m

which are uniformly continious on any bounded set.

Property B: 8u 2 U the limits

lim
j!1

1

Tj

TjZ
0

gi(x(s); u(s))ds; i = 1; : : : ; n;

where x(t) is some solution of system (12), limTj = +1,
exist and don't depend on sequence fTjg.

Then we can de�ne functionals 'i on U , i = 1; : : : ; n
as follows:

'i(u(�)) = lim
j!1

1

Tj

TjZ
0

gi(x(s); u(s))ds; i = 1; : : : ; n:

(14)
Due to convergence property the values of functionals (14)
don't depend on initial condition x(0).

The following theorem is valid.

Theorem 3. Let the system (12) has the properties A
and B. Then S-procedure for any number of functionals
(14) is loseless.
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The key point of the proof of this theorem is the fol-
lowing auxiliary statement, which is interesting as itself.

Lemma.Introduce for any u 2 U the following vec-
tor �(u) = ['1(u); : : : ; 'N (u)] 2 R

N and denote �(U ) =
f�(u); u 2 Ug � R

N . Then the closure of set �(U ) is the
convex set.

Proof of the Lemma. It is su�ce to prove that 8u1 2
U , u2 2 U

z1 + z2

2
2 �;

where � is the
closure of �, zi = col(�1(ui(�)); : : : ; �l(ui(�))), i = 1; 2,
that is there exists a sequence wn 2 � : wn !

z1+z2
2

when
n!1. Fix T > 0 and de�ne vn(�) by the expression

vn(t) =

�
u1(t � kT ) if 0 � t < nT;

u2(t� kT ) if nT � t < 2nT

for 0 � t < 2nT , vn(t) = vn(t � 2nT ) for t � 2nT , and
denote wn = ['1(vn); : : : ; 'N (vn)].

It is necessary to prove that for any � > 0 there exists
N� s.t.

kwn �
z1 + z2

2
k < � when n > N�:

Because of the continuity of the function gj(x; u)
8�1 > 0 9� > 0, s.t.

kgj(x; u)� gj(y; u)k < �1; j = 1; : : : ; l;

when kx � yk < �. From the convergence property it
follows that 9�� > 0, s.t.

kxui(t) � x
0
ui
(t)k < � when t > �� i = 1; 2:

It may considered that �� = k�T , where k� is integer num-
ber. For the purpose of estimation of �j(vn(�)) for n > k�

we devide the set of integer numbers into three parts P ,
Q1, Q2 where

P = ft : kT � t � (k + 1)T; k 2 ff0; 1; : : :; k�g

[fn; : : : ; n+ k�g [ f2n; : : : ; 2n+ k�g [ : : :gg ;

Q1 = ft : kT � t � (k + 1)T; k 2 ffk� + 1; : : : ; ng

[f2n+ k� + 1; : : : ; 3ng [ : : :gg ;

Q2 = ft : kT � t � (k + 1)T;

k 2 ffn+ k� + 1; : : : ; 2ng

[f3n+ k� + 1; : : : ; 4ng [ : : :gg :

Obviously P is a totality of transient intervals. Clearly
vn(t) = ui(t) when t 2 Qi; i = 1; 2. Let t = 2dnwhere d is
natural number and denote P t = P \[0; t],Qt

i = Qi\[0; t].
Then

1

t

Z t

0

gj(xui(s); vn(s))ds

=
1

t

"Z
P t

gj(�)ds+

Z
Qt
1

gi(�)ds+

Z
Qt
2

gj(�)ds

#

= I0 + I1 + I2

It is felt that the bounded set of initial conditions 
 in-
clude the �-neighbourhood of the solutions x

0
ui
(s), 0 �

s < +1; i = 1; 2. Moreover due to the convergence
property and the fact that the solution of system depend
continiously on initial conditions 9D > 0 s.t. 8s � t

kxui(s)k � D

and because of the continuity of gi there exist Dg s.t. 8s �
t

kgj(xui(s); ui(s))k � Dg i = 1; 2:

Then in the end of any interval [knT; (k + 1)nT ] we have
xvn(t) 2 
. Therefore

jI0j �
Dg(k� + 1)

n

and

jI0j �
�

5
when n � N� =

5Dg(k� + 1)

�
:

Furthermore

Ii =
1

t

Z
Qt
i

gj(xui(s); ui(s))ds

=
1

t

Z
Qt
i

gj(x
0
ui
(s); ui(s))ds

+
1

t

Z
Qt
i

[gj(xui(s); ui(s)) � gj(x
0
ui
(s); ui(s))]ds

=
'j(ui(�))

2
+Mij

where

jMijj �
Dg(k� + 1)

n
+

�1(1�
k�+1
n

)

2

�
�

5
+

�1

2
:

By choosing �1 s.t. �1 T
2

<
�
5

we obtain that

����'j(vn) � 'j(u1(�)) + 'j(u2(�))

2

���� < �

when n > N�.

kwn �
z1 + z2

2
k �

p
N � �:

The statement of Theorem 3 is derivable from Lemma
in the regular way (see [9]).
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5 Conditions of sequential qua-

sidissipativity for several sup-

ply rates

Now we are in position to formulate the main result of the
paper.

Theorem 4. System (12) is weakly sequen-
tially quasidissipative with respect to supply rates
f!i(u(t); y(t))g; i = 1; 2; : : : ; n if and only if there exist
constants �i � 0; i = 1; 2; : : :; n,

Pn

i=1 �i > 0, s.t the sys-
tem is weakly sequentially quasidissipative with respect to
supply rate de�ned by

!� (u(t); y(t)) =

nX
i=1

�i!i(u(t); y(t)):

Proof. We have that there exist nonnegative constants
�i; i = 1; : : : ; N and 8u 2 U there exist a sequence of
time instants fTjg; j = 1; 2; : : : ; limj!1 Tj = +1, s.t. 8j
the inequality

TjZ
0

!i(u(s); y(s))ds + �iTj � 0 (4)

for some i 2 f1; 2; : : :; ng. Because of the n is �nite num-
ber then for some i0 2 f1; 2; : : : ; ng the subsequence fTkg
are derivable s.t. 8k we have

TkZ
0

!i0(u(s); y(s))ds + �i0Tk � 0: (4)

In view of equivalence of de�nitions 2 and 2' it immedi-
ately follows that there exist a sequence of time instants
fTk0g; k0 = 1; 2; : : : ; limk0!1 Tk0 = +1, s.t.

lim
k0!1

1

Tk0

Tk0Z
0

!i0(u(s); y(s))ds � ��i0

for some �i0 � 0. It follows that

lim
k0!1

1

Tk0

Tk0Z
0

(!i(u(s); y(s)) + �i + �)ds > 0

8� > 0. Throudh the use of S-procedure it can be obtained
that

lim
k0!1

1

Tk0

Tk0Z
0

nX
i=1

�i(!i(u(s); y(s)) + �i + �)ds > 0

for some �i � 0 ,i = 1; 2; : : : ; n: In view of arbitrarity of
� > 0 and nonnegativity of all �i it follows that

lim
k0!1

1

Tk0

Tk0Z
0

nX
i=1

�i!i(u(s); y(s))ds � �
nX
i=1

�i�i: (15)

The converse statement can be proved as follows. Con-
sider the sequences

f�k0gi =
�i

Tk0

Tk0Z
0

!i(u(s); y(s))ds;

i = 1; : : : ; n; k0 = 1; 2; : : : : (16)

If there are the unbounded sequences among them then
there is at least one number l 2 f1; : : : ; ng s.t. f�k0gl is un-
bounded from above, otherwise the inequality (15) would
be false. Thus it is possible to separate the subsequence
of f�k0gi0 which is tend to +1. Let all sequences (16) are
bounded. From the fact that 8�i � 0 and in view of the
proreties of upper limit it follows that

nX
i=1

�i lim
k0!1

1

Tk0

Tk0Z
0

!i(u(s); y(s))ds

� lim
k0!1

1

Tk0

Tk0Z
0

nX
i=1

�i!i(u(s); y(s))ds

� �
nX
i=1

�i�i: (17)

If �i = 0 for some i then the correspondence terms can be
eliminated from inequalities (17). After reindexing rest
terms we have

n0X
i=1

�i lim
k0!1

1

Tk0

Tk0Z
0

!i(u(s); y(s))ds � �
n0X
i=1

�i�i

where all �i > 0; n0 � n. Since the right part of the last
inequality is nonpositive then 9m 2 f1; 2; : : : ; n0g s.t.

�m lim
k0!1

1

Tk0

Tk0Z
0

!m(u(s); y(s))ds � �
n0X
i=1

�i�i

and

lim
k0!1

1

Tk0

Tk0Z
0

!m(u(s); y(s))ds � �

Pn

i=1 �i�i

�m

;

From de�nition of upper limit it follows that there exist
the subsequence fTk"g � fTk0g s.t.

lim
k"!1

1

Tk"

Tk"Z
0

!m(u(s); y(s))ds � �

Pn

i=1 �i�i

�m

;

The proof is complete.

5



6 Conclusions

The meaning of the above results is expanding the scope
of applications for dissipativity-like concepts. Now these
concepts can be used for studying not only Lyapunov and
asymptotic stability as in [2, 3, 13] but also for examina-
tion of boundedness of system trajectories.

On the other hand Theorem 4 demonstrates that fur-
ther complication of quasidissipativity by means several
supply rates may appear to be useless ( see also [15]). It
may happen if the corresponding version of S-procedure
is loseless. Finally the S-procedure losslesness theorem
allows to solve new class of optimisation problems using
approach of [7].
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