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Abstract — New applicability conditions for  adaptive nonlin-

ear observer are developed, which provide partial observation of
uncertain  nonlinear affine plant with estimation  of unknown
parameters. Applicability of the proposed results to time-varying
chaotic systems is demonstrated by  examples of  brusselator and
Duffing systems. Computer simulation results are presented.

Index Terms— adaptive observer, partial stability, synchroni-
zation, information transmission.

I. INTRODUCTION

Adaptive observers design for nonlinear systems was exten-
sively studied during last decade. Such an interest was mainly
motivated by possible application of adaptive observers to
information encoding and transmission. Typically a chaotic
dynamical system is used as a transmitter and its output signal
is changed by modulating its parameters [11, 12, 13]. It was
shown in [7] that it is possible to build a receiver based on
adaptive observer, which can track output of transmitter and
estimate transmitter parameters under some mild conditions.
Potentialities of fast information transmission in the presence
of noise in such systems were demonstrated in [1, 2, 3]. Sev-
eral techniques were previously used to design receivers [4, 5,
7, 14, 15, 17, 21], most of them being based on passifiability
property of transmitter under assumption that relative degree
of transmitter is equal to zero or one. Other solutions can be
found in [9, 10], where a state feedback was used for adaptive
observer construction and robust properties of proposed
schemes were not investigated. Recent paper [8] overcame the
relative degree limitation for adaptive observer-based com-
munication systems and extended them to a class of nonpassi-
fiable systems. The result of [8] is based on a new canonical
form of nonlinear adaptive observers [6, 18].

In the present paper the result of [8] is extended to the case
of partial observation when exact estimation of only a part of
the transmitter state variables is needed. For such a case the
applicability conditions are obtained, which allow to enlarge
class of transmitter systems. Unlike previous results, our re-
sults allow to use time-varying systems for both transmitter
and receiver. For example, the proposed results are applicable
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to chaos generators with external periodic excitation. In the
paper the obtained results are demonstrated by two examples
of  practical importance: the brussellator model [19] and the
Duffing system excited by harmonic signals.

In Section 2 the brussellator model [19] and the Duffing
system are introduced. In Section 3 an adaptive observer
scheme is designed under assumptions covering case of the
systems from the previous section. Computer simulation re-
sults are presented in Section 4.

II. STATEMENT OF THE PROBLEM

In the literature on chaos and its applications  two main
classes of chaotic systems are usually considered: autonomous
(time-invariant) and non-autonomous (time-varying) (see,
e.g.[16]). However, in applications to information transmis-
sion in most cases only the former ones are used [11,12,13].
At the same time time-varying systems are sometimes easier
to implement, or, they can be modeled by using other physical
principles. Two typical examples of nonlinear time-varying
systems where chaos is generated by means of applying a
harmonic excitation signal are brusselator, modeling some
chemical reactions and Duffing system, used in many studies
in mechanics.

We will use the equations of forced brusselator model in the
following form [19]:
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where 1s  and 2s  are state variables with positive real val-
ues; y  as usually is on-line measured output; parameters

4.0=A , 05.0=a , 81.0=ω  and 2.1=B ; unknown or "trans-
mitted" parameter θ  belongs to set [ ]2,0=Ωθ  (during simu-
lation it will be taken 1=θ ). We will also use the Duffing's
system equations in the form [16]:
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where 1x  and 2x  are state variables; y  is measured output;
[ ]5.1,5.0=Ω∈θ θ  is "transmitted" parameter; model parame-

ters 1=ω== Ba .
The problem is to design a dynamical system (adaptive ob-

server) some variables of  which provide estimates of a speci-
fied part of variables and parameters of the transmitter (system
(1) or (2)). Since the systems are time-varying, it is not always
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possible to achieve zero estimation error. Therefore, we will
be interested in achieving bounded and sufficiently small as-
ymptotic value of the estimation error.

III. DESIGN OF ADAPTIVE OBSERVERS

Following [8] we assume that model of transmitter system
can be written as follows:

( ) ( ) ( )θyByxyAx +ϕ+=& , xCy = , (3)

where nR∈x  is state space vector of transmitter; mR∈y  is

output vector; pR⊂Ω∈ θθ  is vector of "unknown" parameters
of transmitter, or, better to say, it is transmitted vector, which
values belonged to some known compact set θΩ  should be
estimated by receiver basing on current measurements of
transmitter output y . Vector function ϕ  and columns of ma-
trix functions A  and B  are locally Lipschitz continuous, C
is some constant matrix of appropriate dimension. Thus, for
any initial condition n

x R⊂Ω∈0x  and any θΩ∈θ  (where xΩ
some known, probably compact, set), solution of (3)

( )θxx ,, 0t  is well defined at the least locally (further we will
omit dependence of 0x  and θ  if it is clear from the context
and will simply write ( )tx ). For transmitter it is naturally to
suppose [8], that its solution is bounded and defined for all

0≥t .
A s s u m p t i o n  1 . For any initial conditions xΩ∈0x  and

any θΩ∈θ , solution of (3) ( )θxx ,, 0t  is an essentially
bounded function of time:

( ) ( )000 ,, xθxx σ≤t , K∈σ0  for all 0≥t . ■
As usually, it is said, that function 00: ≥≥ →ρ RR  belongs to

class K , if it is strictly increasing and ( ) 00 =ρ ; ∞∈ρ K  if
K∈ρ  and ( ) ∞→ρ s  for ∞→s  (radially unbounded). Func-

tion nRR →≥0:x  is essentially bounded, if
( ){ } ∞+<≥= 0,sup ttess xx ,

where ⋅  denotes usual Euclidean norm. Such assumption is

valid for class of system (3) with so-called chaotic dynamics.
To design an observer we need also two assumptions, which
deal with stabilizability property of linear part of transmitter
system (3).

A s s u m p t i o n  2 . There exists continuous matrix func-
tion mnm RR ×→:K , such, that there exists function

0: ≥→ RRV n ,
( ) ( ) ( )xCxxC 21 α≤≤α V , ( )xx ρ≤∂∂V ;

( ) ( ) ( ) ( )xxCxyGxx 43 α+α−≤∂∂V ,

for any bounded values of mR∈y and nR∈x , where 1α , 2α ,

3α  are some functions from class ∞K  and ρα ,4  are func-
tions from class K , matrix ( ) ( ) ( )CyKyAyG −= . ■

A s s u m p t i o n  3 . For any initial conditions nR∈0s  so-
lution of system

( ) rsyGs +=& , (4)
is bounded for any essentially bounded inputs r  and y :

( ) ( ) ( )rsrss 1010 ,, σ+σ≤t , K∈σ1  for all 0≥t . ■
By itself Assumption 2 means nothing, but with combina-

tion with Assumption 3 they provide for system (4) ultimate
boundedness of signal sC . Indeed, Assumption 3 implies
existence of finite norm s  for state vector of system (4),
then inequality for time derivative of function V  from As-
sumption 2 takes form:

( )( ) ( ) ( )( )rss 1014
1

23 σ+σα+αα−≤ − VV o& .
From the last inequality the following output asymptotic gain
can be obtained:

( ) ( ) ( )rssC 201lim λ+λ≤
∞+→

t
t

,

( ) ( )( ) ( )( )2
1141 25.02 sss σρ+σα=λ ,

( ) ( )( ) ( )( ) sssss 2
114

2
2 225.0 σρ+σα+=λ .

If the gain function 4α  can be "decreased" by appropriate
choice of design matrix function K , then the desired asymp-
totic bound for signal sC  can be assigned.

It is worth to stress, that comparing with [8] Assumptions 2
and 3  enlarge the class of models for transmitter systems,
since they do not suppose global asymptotic stability property
of system (4) uniformly with respect to input y  and 0=r , as
it was done in [8]. Before we prove our main result we should
introduce a new property.

D e f i n i t i o n  1 . Function RRa →≥0:  is called ( )∆µ, –
positive in average (PA), if for any 0≥t  and any ∆≥δ , 0>µ ,

( ) δµ≥ττ∫
δ+t

t
da . ■

In other words, time function ( )ta  is ( )∆µ, –PA, if its av-
erage value ava  on any large enough time interval [ ]δ+tt, ,

∆≥δ ,

( )∫
δ+

ττ
δ

=
t

t
av daa 1

is not smaller than some positive constant µ . Note, that func-
tion ( ) ( ) α+= tta sin  admits this property for any strictly
positive constant α , thus, function a  should not be positive
for all 0≥t . We will need the following lemma that can be
easily proved by integration.

L e m m a  1 . Let us consider time-varying linear dynamic
system

( ) ( )tbptap +−=& , 00 ≥t , (5)
where Rp∈ , ( ) Rtp ∈0  and functions RRa →≥0: ,

RRb →≥0:  are Lebesgue measurable and essentially
bounded. Then:

A. Solution of system (5) is defined for all 0tt ≥ :
( ) ( )[ ] ( )0

0
ttata eebtptp −+≤ .

B. If function a  is ( )∆µ, –PA for some 0>µ , 0>∆ , then
this solution is bounded and the following upper estimate
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holds:

( )
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additionally, if ( ) 0→tb  for ∞+→t , then also ( ) 0→tp  as-
ymptotically. ■

In this work we will use the same adaptive observer equa-
tions as in paper [8]:

( ) ( ) ( ) ( )( )yyyKθyByzyAz )
& −++ϕ+= , zCy =) ; (6)

( ) θΩηyGη &)& −= ; (7)

( ) ( )yBΩyGΩ +=& ; (8)

( )CηyyCΩθ +−γ= )&) TT , (9)

where nR∈z  is vector of estimates of nonmeasurable state
space vector of system (3); mR∈y)  is vector of on-line meas-

urable output y  estimates; vector nR∈η  and matrix pnR ×∈Ω
are auxiliary variables, which help to overcome high relative
degree obstruction; pR∈θ

)
 is vector of estimates of "trans-

mitted" vector θ ; 0>γ  is a design parameter.
T h e o r e m  1 . Let Assumptions 1, 2 and 3 hold and func-

tion ( ) 2tΩC  satisfies ( )∆µ, –PA condition for some 0>µ ,
0>∆ , then closed-loop system consisting of transmitter (3),

adjustable receiver (6), scheme of augmentation (7), (8) and
adaptation algorithm (9) provides boundedness property of
the system solution for any initial conditions and any 0>γ ,
additionally

( ) ( )0
1lim δθθ λµ≤− ∆µγ−−

∞+→
et

t

)
.

P r o o f . We will denote zxe −=  as state estimation error of
proposed observer (6). Let yyε )−=  be corresponding meas-
urable output error. The behavior of error e  can be rewritten
as follows:

( ) ( )( )θθyBeyGe
)

& −+= , Ceε = . (10)
Introduce the auxiliary error signal

( )θθΩηeδ
)

−−+= ,
which dynamics coincides with auxiliary system (4) with zero
input r :

( )δyGδ=& . (11)
Hence, according to previous discussion, signal δ  is bounded
and signal Cδ  is ultimately bounded. Let us analyze the fol-
lowing Lyapunov function candidate with respect to part of
variables [20]:

( ) ( ) ( )θθθθθ
)))

−−γ= − TW 1 ,
its time derivative for system (9) takes form:
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According to Lemma 1 solution of the last linear time-varying
inequality is bounded, if functions ( ) 2tΩCγ  and ( ) 2tCδ
are. But these two conditions are satisfied, due to form of

systems (8), (11) (they are in class of system (4)) and As-
sumptions 1 and 3, signals Ω  and δ  are bounded and:

( ) ( ) ( )( )( ) ∞+<σ+σγ≤γ 2
0max101

22 xΩCΩC Bt ,

( ) ( ) ∞+<σ≤ 2
01

22 δCδC t ,
where ( ) ( ) ( ){ }000max ,sup xxxCBx σ≤=B  and expression

C  for some matrix { }jic ,=C , mi ,1= , nj ,1=  ( jic ,  are cor-
responding elements of matrix C ) should be understood in
the following sense:

∑∑
= =

=
m

i

n

j
jic

1 1

2
,C .

From Lemma 1, the following estimate asymptotically holds
with 00 =t :

( ) ( ) ∆µγ−−−
∞+→

λµγ≤ etW
t

2
0

11lim δ ,

and parameter error  boundedness ( )tθθ
)

−  is also obtained.
Note, that system (10) has form of system (4) too with input

( )( )θθyB
)

− . Therefore, the boundedness of signal e  follows
from Assumption 3. Finally, signal η  is bounded because it
forms bounded signal δ , and all other signals, which also
form signal δ , are bounded. Therefore, boundedness of the
system solution is established. ■

Note, that the result of the last theorem does not guarantee
attractivity property of output estimation error ε  for an adap-
tive observer. In general only asymptotic convergence of ε
and parameter error ( )tθθ

)
−  to some compact set is provided.

In fact, for information transmitting purposes only parameter
error convergence is necessary, and output error estimation is
not needed. Signal ( ) 2tΩC  is directly produced by observer
system and its PA parameters (constants µ  and ∆ ) can be
directly computed based on its on-line measurements, i.e. it is
possible for given positive constant ∆  to calculate an average
value

( ) ( )∫ ττ=Ω
t

av dtt
0

21 ΩC

for ∆≥t . Then constant µ  can be computed as follows:
( ){ }tavt Ωχ=µ ∆≥inf ,

where ( ]1,0∈χ  is some design constant.
It is worth noticing that asymptotic estimate for parameter

error ( )tθθ
)

− , presented in the Theorem, can be evaluated
with some difficulties, since the initial condition 0δ  itself de-
pends on unmeasured discrepancy ( )0θθ

)
− , but this estimate

helps to understand mechanisms for parameter error decreas-
ing (for example, increasing coefficient γ  or decreasing gain
function λ ).

IV. APPLICATIONS

In this section we will consider two examples of adaptive
observer construction for models of physical systems pre-
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sented in Section 2, which are useful from practical point of
view. Both examples satisfy conditions of Theorem 1, com-
puter simulations demonstrate workability of proposed results.

A. Forced brusselator model
Model (1) has a difference with respect to the studied be-

fore system (3), right hand side of this system explicitly de-
pends on time. So, to compensate this shortage and to simplify
below discussion let us introduce the following change of co-
ordinates

11 sx = , 212 ssx += ,
then equations of the model take form:
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(12)

where new state variables 3x  and 4x  were added to exclude
time dependence from system equations and to generate
needed sinusoidal signal. It is clear, that for corresponding
initial conditions both models produce the same output signal.
So, system (12) satisfies conditions of Assumption 1 for any
bounded nonnegative initial conditions.

As an observer for system (12) let us analyze the following
dynamical system:
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where θ
)

 is an estimate of θ . For this observer dynamic of
state error zxe −=  can be rewritten as follows:
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which admits conditions of Assumption 3 for any non zero
values of signal y  and 0>K . Assumption 2 is satisfied with

( ) 2
11 5.0 eeV = , since its time derivative has an upper bound:

( ) ( ) 22
2

23
3 5.05.02 eyeaVKV ++−≤& .

Augmented error systems and adaptation algorithm have
form:
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(15)

( )111 η+−Ωγ=θ zy&) . (16)
The result of computer simulation of system (12)–(16) is

presented in Fig. 1. During simulation all initial conditions
were placed as zero except ( ) 101 =x , ( ) 202 =x ,

( ) ( ) ( ) 1000 333 =η=Ω=x  and parameters 1=γ=K . In Fig. 1,a
an output error time graphic is shown, in Fig. 1,b trajectory of
"transmitted" parameter estimation θ

)
 is presented. According

to last graphic it is possible to conclude, that signal ( )tθ
)

 con-
verges to its desired value θ .
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 ( )tθ
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a.

b.

Fig. 1. Simulation result for Duffing's model.
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Fig. 2. Simulation result for brusselator model.

B. Forced Duffing's model
As in the previous example, to exclude explicit time de-

pendence we should introduce auxiliary variables 3x  and 4x
in model (2):

.
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;
;;
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For some bounded set of initial conditions ( ) 101 ≤x  and
( ) 102 ≤x  this system produces bounded solution (initial

conditions for auxiliary variables ( )03x  and ( )04x  are cho-
sen to guarantee desired sinusoidal signal on the input of
Duffing's model). Thus, model (17) for such initial conditions
satisfies to Assumption 1.

Let us consider the following observer for this model:
( )
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;
;;
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The dynamics of state estimation error zxe −=  take form:
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For any 0>K  matrix
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has two roots with strictly negative real parts and two complex
conjugated roots with zero real parts, thus for any initial con-
ditions system (4) with such matrix G  admits conditions of
Assumption 3. Assumption 2 is also satisfied for

( ) 2
11 5.0 eeV = , due to an upper bound for time derivative of

function V  can be rewritten as follows:
2
2

15.0 eKVKV −+−≤& .
Augmented error systems and adaptation algorithm have

form:
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( )111 η+−Ωγ=θ zy&) . (21)
The result of computer simulation of system (17)–(21) is

shown in Fig. 2. All initial conditions for simulations were
taken zero except ( ) 101 =x , ( ) 102 =x ,

( ) ( ) ( ) 1000 333 =η=Ω=x  and parameters 1=γ=K . In Fig. 2,
a state space trajectories are presented for transmitter model
and observer, in Fig. 2,b output and parameter estimation er-
rors time graphics are shown.

V. CONCLUSION

Set of applicability conditions for a scheme of adaptive ob-
server, proposed in  [8], is introduced and substantiated. These
new conditions weaken requirements imposed on adaptive
observer scheme in [8]. Such a weakening allows to enlarge
class of admissible transmitter systems. The main advantage
of these conditions consists in specializing of "estimation"
goals for adaptive observer system, i.e. proposed in paper [8]
requirement of output estimation error asymptotic conver-
gence was replaced to simple boundedness.
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