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1. INTRODUCTION

The recent rapid development of nanotechnologies
has generated a need for analytical models that can ade-
quately describe the physical-mechanical properties of
nanometer-sized objects. In most existing models, the
main mechanical characteristics of nanocrystals are
assumed to be identical to those measured for macro-
scopic crystals. However, when a structure consists of
only a few atomic layers, discordance between its evi-
dent discreteness and the continuum models applied for
describing the structure should manifest itself. The dis-
crepancy between the values of the elastic moduli mea-
sured for microscopic and macroscopic samples has
been pointed out by many investigators [1–3]. Unfortu-
nately, direct measurements of the elastic characteris-
tics of a nanometer-sized object are impossible; one is
forced to use indirect methods [2, 4, 5]. One of the
methods used for determining the elastic characteristics
of such objects is the study of the microrelief that forms
when a sample covered with an ultrathin film is
stretched [2, 5, 6]. By solving the corresponding con-
tinuum problem on the stability of the thin-walled con-
struction, one can determine the Poisson ratio and the
Young modulus of the covering film from such experi-
ments [1, 6, 7]. However, the values of the elastic char-
acteristics determined in this way differ essentially
from the corresponding macroscopic values. This dis-
crepancy may be due to both the specific internal struc-
ture of the sputtered film and the discreteness of the
film on a nanometer scale. This paper is devoted to
studying the influence of the discreteness of a film on
its elastic moduli and is a continuation of the study per-
formed in [8].

To investigate the size effect for the mechanical
characteristics of a material, we take, as a model, a two-
dimensional strip of a single crystal with hexagonal
closely packed (hcp) structure (triangle lattice). The
atoms are assumed to interact via a pairwise potential.
The main results are obtained by including only the
nearest neighbor interaction; the effect of more distant
neighbor atoms is estimated in Section 4. In determin-
ing the elastic moduli, we restrict our consideration to
the case of tension and compression of a single crystal;
the case of shear strain is not discussed in this paper.

2. DETERMINATION OF ELASTIC MODULI

We consider a two-dimensional single crystal
(Fig. 1) infinitely long (along the 

 

x

 

 axis) and 

 

N

 

 

 

≥

 

 2
atomic layers thick (along the 

 

y

 

 axis). Each atom inter-
acts only with nearest neighbor atoms, as shown in
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Fig. 1.

 

 Model under study: two-dimensional single-crystal
strip (schematic).
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Fig. 1. Constant tensile forces 

 

Q

 

 are applied to the
atoms situated at the ends of the crystal. The deformed
state of the crystal is fully determined by the distance 

 

a

 

between neighboring atoms in each layer and the dis-
tance 

 

h

 

 between adjacent layers. The distance between
the nearest neighbor atoms belonging to adjacent layers
is 

 

b

 

 (Fig. 1). Obviously, we have 

 

b

 

2

 

 = 

 

a

 

2

 

/4 + 

 

h

 

2

 

. In the
undeformed state, the lattice consists of equilateral tri-
angles with sides 

 

a

 

 = 

 

b

 

 = 

 

a

 

0

 

 and the load applied to the
ends is zero (

 

Q

 

 = 0). Let 

 

F

 

(

 

r

 

) be the interaction force
between two atoms separated by a distance 

 

r

 

 (the attrac-
tive force is considered to be positive). Then, the equi-
librium condition (along the 

 

y

 

 axis) for an atom situated
at the crystal surface has the form

(1)

Here, 

 

σ

 

2

 

 is the normal stress applied along the 

 

y

 

 axis.
Let us mentally cut the crystal along the vertical
straight line AB (Fig. 1). The total normal force exerted
on one part of the crystal by the other is

(2)

Here, 

 

σ

 

1

 

 is the normal stress applied along the 

 

x

 

 axis;
and 

 

H

 

 is the crystal thickness (along the 

 

y

 

 axis). The
value of 

 

H

 

 cannot be determined unambiguously. For
example, if the thickness is defined as the spacing
between the layers lying at opposite ends of the crystal
(Fig. 1), then 

 

H

 

 = (

 

N

 

 – 1)

 

h

 

. On the other hand, it is rea-
sonable to define the crystal thickness as the product of
the thickness of one layer multiplied by the number of
layers, which gives 

 

H

 

 = 

 

Nh

 

. For this reason, we define
the thickness as

(3)

where the quantity 

 

N

 

∗

 

 reflects the ambiguity of the def-
inition of 

 

H

 

. Since the strains are small, the forces act-
ing in the crystal can be approximately written in the
form

(4)

where 

 

C

 

 is the atomic-bond stiffness and the symbol 

 

∆

 

indicates the deviation of a quantity from its corre-
sponding value for an undeformed crystal. Let us
denote the strains of the crystal along the 

 

x

 

 and 

 

y

 

 axes
by 

 

ε

 

1

 

 and 

 

ε

 

2

 

, respectively. We have

(5)

Substituting Eqs. (3)–(5) into Eqs. (1) and (2) yields the
elasticity relations

(6)

Q 2
h
b
---F b( ) σ2 = 

Q
a
---- 2

h
ab
------F b( ).= =

def

Hσ1 NF a( ) N 1–( ) a
2b
------F b( ).+=

H  = N*h, N 1– N* N ,≤ ≤def

F a( ) C∆a, F b( ) C∆b, C = F ' a0( ) 0,>= =
def

ε1 = ∆a/a0, ε2 = ∆h/h0, h0 = 3a0/2.
def def def

σ1 C11ε1 C12ε2, σ2+ C21ε1 C22ε2,+= =

where the stiffness coefficients Ckn are given by

(7)

It follows from Eq. (7) that the crystal under study is
anisotropic. It will be recalled that an infinite two-
dimensional hcp crystal is isotropic. Therefore, the
anisotropy of the crystal under study is a size effect. Let
us introduce the notation

Here, ν1 and E1 are the Poisson ratio and the Young
modulus, respectively, characterizing the tension along
the x axis and ν2 and E2 are the respective quantities
characterizing the tension along the y axis. Using
Eqs. (6), we obtain

(8)

Substituting Eqs. (7) into Eqs. (8) yields the required
expressions for the elastic moduli:

(9)

Here, E∞ = 2C/  and ν∞ = 1/3 are the values of the
Young modulus and Poisson ratio corresponding to the
infinite crystal, respectively [9, 10]. Let us discuss the
formulas derived above.

When the crystal is stretched along the atomic lay-
ers, the Young modulus E1 essentially depends on the
quantity N∗ , i.e., on the definition of the thickness of
the nanometer-sized crystal strip. If we put N∗  = N (the
maximum value of N∗ ), then the Poisson ratio and
Young modulus for tension along atomic layers will be
independent of the number of layers. This is due to the
fact that the crystal is infinite in the longitudinal direc-

tion. The Young modulus  corresponding to the
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minimum value N∗  = N – 1 is not a constant; it increases
with decreasing number of atomic layers, so that at N =
2, this Young modulus becomes twice as large as E∞
(Fig. 2). Therefore, the ambiguity of the definition of
the Young modulus is essential in the case of small val-
ues of N.

When the crystal is stretched transversely to the
atomic layers, both the Poisson ratio and the Young
modulus vary with N; namely, the Poisson ratio
decreases and the Young modulus increases with
decreasing number of layers (Fig. 2). It can be seen
from Fig. 2 that the Poisson ratio ν2 depends on N more
heavily than does the Young modulus E2. For example,

at N = 2, the deviation of the Young modulus from E∞
does not exceed 6%, whereas the Poisson ratio in this
case is nearly half as large as ν∞.

As N  ∞, the elastic moduli approach their val-
ues for an infinite crystal; these values do not depend on
the direction of the applied stress. It should be noted
that when the macroscopic values of the elastic moduli

are used, the maximum relative error is roughly .

For example, at N = 10, the deviation of  and ν2

from their respective macroscopic values is 11%,
whereas at N = 100, this deviation is as small as 1%
(Table 1).

3. STRAIN ENERGY

Let us discuss the elasticity relations (6). According
to the macroscopic elasticity theory, the stresses σk and
the elastic moduli Ckn are related to the specific strain
energy through the Cauchy–Green equations

(10)

where U is the strain energy per unit volume. As before,
we consider only the case of linear elasticity. From
Eq. (10), it follows that Ckn = Cnk. Let us elucidate
whether this relation holds for a nanocrystal. According
to Eq. (7), we have

(11)

Therefore, in the case of N∗  = N, which is shown in Sec-
tion 2 to be the most preferable, we have C12 ≠ C21.
Does this result contradict the energy considerations?
In order to clarify this issue, we consider the case where
the crystal is stretched transversely to the atomic layers
and find the change in the potential energy of a crystal
domain with a fairly large length along the atomic lay-
ers. We have

(12)

where EΠ is the total potential energy of the crystal, Q
is the external force acting on an atom at the crystal sur-
face (Fig. 1), dy is a small displacement of the upper
surface of the crystal (the lower surface is assumed to
be fixed), and Nx is the number of forces Q applied to
the upper face of the crystal domain in question. We
assume that Nx is sufficiently large for the size effects
due to the finiteness of this domain to be negligible. The
specific potential energy (per unit volume) is defined as

(13)

The quantity in parentheses is the entire volume of the
crystal domain, with Nxa0 being its dimension along the
x axis and N∗ h0 being the domain dimension (thick-

100%
N

--------------

E1
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σk
∂U
∂εk

-------, Ckn = 
∂σk

∂εn
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3

Fig. 2. Dependences of the Young modulus and Poisson
ratio on the number of atomic layers. (1, 2) Young modulus

in the longitudinal ( /E∞) and transverse (E2/E∞) direc-

tions, respectively, and (3) the relative Poisson ratio (ν2/ν∞)
for stresses applied along the transverse direction.

E1
max

Table 1.  Dependence of the elastic moduli of a nanocrystal
on the number of atomic layers

N /E∞ ν2 ν2/ν∞ E2/E∞

2 2.00 0.18 0.53 1.06

3 1.50 0.23 0.69 1.04

4 1.33 0.26 0.77 1.03

5 1.25 0.27 0.82 1.02

10 1.11 0.30 0.91 1.01

20 1.05 0.32 0.96 1.01

50 1.02 0.33 0.98 1.00

100 1.01 0.33 0.99 1.00

Note: , E2, and E∞ are the Young moduli for a strip (in the

longitudinal and transverse directions) and for an infinite
crystal, respectively; ν2 and ν∞ are the Poisson ratios for a
strip (in the transverse direction) and an infinite crystal,
respectively.

E1
max

E1
max

N
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ness) along the y axis. As indicated in Section 2, the lat-
ter quantity cannot be determined unambiguously; this
ambiguity also manifests itself in the definition of the
specific internal energy. The quantities Q and dy are
related to the stress and strain of the crystal through the
equations

(14)

Substituting Eqs. (13) and (14) into Eq. (12) yields

(15)

Thus, the macroscopic Cauchy–Green relations (10) do
not hold in the case of finite values of N. Of course,
Eq. (15) can be reduced to Eq. (10) by putting N∗  =
N − 1. In this case, as follows from Eq. (11), the condi-
tion C12 = C21 is satisfied. However, it will be recalled
that the Young modulus E1 essentially depends on N in
this case, in contrast to the case of N∗  = N [see Eq. (9)].
This situation also lends support to the fundamental
conclusion that the size of a nanocrystal, as well as the
quantities that depend on this size, can be defined dif-
ferently. A definition appropriate in one case proves to
be unsuitable in another. Thus, we find that the
Cauchy–Green relations (10) in the case in question
have to be modified as follows:

(16)

The formula for σ1 in Eq. (16) is identical to that for a
macroscopic crystal, because the crystal under study is
infinite along the x axis.

Directly calculating the number of atomic bonds per
unit length of the single-crystal strip, we find an explicit
formula for the specific interaction energy U:

(17)

where Π(r) is the potential energy of interaction
between two atoms separated by a distance r. The stiff-
ness coefficients Ckn as calculated from Eqs. (16) with
the specific energy given by Eq. (17) are identical to
those calculated in Section 2 [see Eq. (7)].

4. ALLOWANCE FOR INTERACTION
WITH ATOMS OF THE SECOND

COORDINATION SHELL

In the previous sections, we considered the interac-
tion of an atom only with its nearest neighbor atoms
(the first coordination shell). Including the interactions
with more distant atoms highly complicates the calcu-
lation of the elastic moduli, because surface effects in
this case distort the crystal lattice in the equilibrium
state; these effects not only complicate the algebra but

Q σ2a σ2a0,≈=

dy N 1–( )dh N 1–( )h0dε2.= =

σ2
N 1–
N*

-------------∂U
∂ε2
--------.=

σ1
∂U
∂ε1
--------, σ2

N 1–
N*

-------------∂U
∂ε2
--------, Ckn

∂σk

∂εn

--------.= = =

U
1

N*a0h0
------------------ NΠ a( ) 2 N 1–( )Π b( )+[ ] ,=

also increase the ambiguity in defining the nanocrystal
dimensions (because there is no certain lattice spacing).
The latter circumstance, in turn, leads to an additional
ambiguity in determining all quantities that depend on
the nanocrystal size (such as the Young modulus).
Another difficulty is associated with the fact that when
the interaction with more distant atoms is included, the
mechanical characteristics become strongly dependent
on the functional form of the interaction potential (in
the case where only the interaction with nearest neigh-
bor atoms is taken into account, the Poisson ratio is
independent of the form of the interatomic interaction
and the Young modulus depends only on one character-
istic of the interaction, the bond stiffness). All the diffi-
culties indicated above make exact analytical solution
of the problem at hand impossible. However, if the
interatomic interaction decays fairly rapidly with dis-
tance, one can advantageously make use of approxi-
mate methods in which the effect of more distant atoms
is treated as a perturbation on the situation considered
in the previous sections. A detailed discussion of these
problems is beyond the scope of this paper. We consider
only one particular case, which allows one to appreciate
how the inclusion of atoms of the second coordination
shell affects the results obtained above.

Let us calculate the Poisson ratio with allowance for
the atoms of the second coordination shell by consider-
ing the stresses applied along the atomic layers. For the
sake of simplicity, we restrict ourselves to the case of a
crystal consisting of two atomic layers (Fig. 3; the
arrows indicate the atoms with which a given atom
interacts). The specific potential energy of the crystal
can be written as

(18)

where P(r2)  Π(r) is the potential energy of inter-
atomic interaction (as a function of distance squared)
and V0 is the crystal volume per atom. The value of V0
cannot be defined unambiguously, but this value is not
used in what follows. The last term in Eq. (18) [not
included in Eq. (17)] describes the interaction with
atoms of the second coordination shell. The Poisson
ratio for stresses applied along the x axis can be calcu-
lated from Eqs. (8) and (16) to be

(19)

U
1

V0
------ P a2( ) P

1
4
---a

2
h2+ 

  P
9
4
---a2 h2+ 

 + + ,=

=
def

ν1
C21

C22
--------–

∂2U
∂ε1∂ε2
---------------- ∂2U

∂ε2∂ε2
---------------- 

 
1–

.–= =

a
h

Fig. 3. Two-layered crystal (schematic).
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Substituting Eq. (18) into Eq. (19) yields

(20)

The quantities a and h should be determined from the
equilibrium conditions ∂U/∂a = ∂U/∂h = 0. Using
Eq. (18), these conditions can be represented in the
form

(21)

Solving the set of equations (21) and substituting the
obtained values of a and b into Eq. (20) yields the Pois-
son ratio. If the interaction potential decays fairly rap-
idly with distance, we can use an approximate expres-
sion,

(22)

which is obtained from Eq. (20) by replacing a and h by
their values for the undeformed lattice and expanding
the result in powers of the small parameter

P''(3 )/P''( ).

Let us discuss Eq. (22). It will be recalled that in the
case of the interaction with nearest neighbor atoms
alone, the Poisson ratio ν1 was shown to be independent
of the number of atomic layers and exactly equal to its
macroscopic value, 1/3. It follows from Eq. (22) that
the allowance for the interaction with atoms of the sec-
ond coordination shell leads to a deviation of the value
of ν1 from 1/3; however, this deviation is small if the
interaction potential decays rapidly with distance. For
example, in the case of the Lennard–Jones potential

ν1 –
a2

4h2
--------

P''
1
4
---a2 h2+ 

  9P''
9
4
---a2 h2+ 

 +

P''
1
4
---a2 h2+ 

  P''
9
4
---a2 h2+ 

 +

-------------------------------------------------------------------------.=

P' a2( ) 2P'
1
4
---a2 h2+ 

 + 0,=

P'
1
4
---a

2
h2+ 

  P'
9
4
---a2 h2+ 

 + 0.=

ν1
1
3
--- 1 8

P'' 3a0
2( )

P'' a0
2( )

-------------------+
 
 
 

,≈

a0
2 a0

2

Π r( ) P r2( ) Π*
a0

r
----- 

 
12

2
a0

r
----- 

 
6

–= =

(where a0 is the equilibrium spacing in a system of two
atoms and Π∗  is the binding energy), the value of

P''(3 ) can be as small as 0.5% of P''( ). Substituting
this value into Eq. (22), we find that the Poisson ratio
changes by 4% when the interaction with atoms of the
second coordination shell is included. The numerically
calculated values of the Poisson ratio from exact formu-
las (20) and (21) and from the approximate expression
(22) are listed in Table 2.

Thus, allowance for the interaction with atoms of
more distant coordination shells leads to changes in the
elastic moduli, but these changes are insignificant if the
interaction potentials decay rapidly with distance. It
should be noted that we made calculations for the case
of N = 2, where the size effect is the most pronounced;
for larger values of N, the influence of the second coor-
dination shell is even less noticeable. However, in a
three-dimensional nanocrystal, the effect may be stron-
ger. For example, for an fcc lattice, the distance to the

second coordination shell is  (instead of  as
in the two-dimensional case) and the corresponding

value of P''(2 ) for the Lennard–Jones potential is

equal to 3% of P''( ) (instead of 0.5% in the two-
dimensional case).

5. DISCUSSION

In the previous sections, we considered the case of a
two-dimensional crystal with an hcp lattice infinite in
one direction and having a finite number of atomic lay-
ers in the other. Now, we will discuss the obtained
results and their possible application to crystals of other
types.

We established above that there is an ambiguity (of
a fundamental nature) in determining the size of a
nanocrystal, which leads to uncertainties in many mac-
roscopic characteristics, such as the applied stress,
Young modulus, and specific volume strain energy.
There is no way to define the nanocrystal size unambig-
uously; if the size definition is such that the elastic
moduli are as close to their macroscopic values as pos-
sible, then the Cauchy–Green relations are modified
and the elastic constant tensor of the crystal ceases to be
symmetric. If, conversely, the Cauchy–Green relations
are assumed to be valid, the size effect is enhanced con-
siderably. We note that the ambiguity under discussion
does not manifest itself in the values of quantities (such
as the Poisson ratio and the strain energy per unit mass)
that are independent of the way in which the nanocrys-
tal size is defined.

From the results of our study, it also follows that the
anisotropy of the elastic properties depends on the
shape and size of the nanocrystal. The mechanical
properties of an infinite crystal lattice, as a rule, are
anisotropic; however, in the case of a nanocrystal, the
anisotropy associated with the structure of the crystal

a0
2 a0

2

2a0 3a0

a0
2

a0
2

Table 2.  Calculated Poisson ratio for the case where stresses
are applied along the atomic layers

Allowance for 
atoms of the 

first coordina-
tion shell alone

Allowance for atoms of the 
second coordination shell

approximate exact

Poisson ratio 0.333 0.320 0.318

Deviation 
from ν∞ , %

0 4.1 4.5

Computing 
formulas

(9) (22) (20), (21)
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lattice is combined with the anisotropy related to the
shape and size of the nanocrystal.

In the case considered in this paper, the Poisson ratio
decreases and the Young modulus increases with
decreasing thickness of the nanocrystal. For very thin
crystal films, these elastic moduli can differ from their
macroscopic values by a factor of two. This conclusion
correlates well with the values of the elastic moduli
determined from the experimental data from [1],
according to which the Young modulus of a thin film
increases with decreasing film thickness. However, it
should be verified whether or not this conclusion is
applicable to crystal lattices of other types (above all,
three-dimensional ones).

We also found that if the interaction with atoms of
the first coordination shell alone is taken into account,
the Poisson ratio is independent of the character of the
atomic interaction and the Young modulus depends
only on one parameter of this interaction, the bond stiff-
ness. Allowance for the interaction with atoms of the
second coordination shell leads to enhancement of the
size effect (especially in the three-dimensional case).
The elastic moduli become strongly dependent on the
functional form of the atomic interaction. These prop-
erties are exhibited by both two- and three-dimensional
simple crystal lattices. However, if the atomic interac-
tion decays rapidly with distance, the allowance for the
interaction with atoms of the second coordination shell
leads only to a negligible correction.

Thus, the results of this study allow us to conclude
that the continuum mechanics, including the continuum
elasticity theory, should be applied to nanocrystals with
a great deal of caution. Allowance should be made for
the change in the mechanical characteristics when crys-
tals are nanometer sized. This conclusion is especially
true for the characteristics (such as the Young modulus)
that can be defined differently on a nanometer scale.
When such characteristics are used, their definition
should be clearly indicated in the case of nanometer-
sized objects. However, we do not argue that the classi-
cal elasticity theory is completely inapplicable on a
nanometer scale. Rather, this theory should be used
with allowance for the size effects and the adequacy of
the continuum approximation should be verified in each
specific case. We note that, according to the calcula-
tions presented above, the size effect is more significant
when a nanocrystal consists of a few atomic layers; the
size effect is small in the case of several tens of atomic
layers and is negligible for crystals with hundreds of
atomic layers.

The question of how the discreteness of the atomic
structure affects the mechanical characteristics is also
of importance in the following respect. The molecular
dynamics method is presently used widely for model-
ing macroscopic processes in solids [11–15], and the
question arises of how many particles should be taken

into account in calculations in order to obtain the
required accuracy. According to our results, the error
caused by the replacement of a continuous medium by
its discrete atomic analog is roughly 1/N, where N is the
ratio of the characteristic linear dimension of the model
to the average interatomic distance. Therefore, for the
error to be 1%, we should take 100 particles in one-
dimensional modeling, 104 particles in the two-dimen-
sional case, and 106 particles in the three-dimensional
case. Calculations for such systems can be easily car-
ried out on a modern computer. Therefore, in principle,
the molecular dynamics method can be used for model-
ing the processes in a macroscopic solid.
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