photo

Irina V. Denisova

Surname:

Denisova

Given name:

Irina

Patronymic name:

Vladimirovna

Contact info:

Tel: + 7 (812) 3214766

Fax: + 7 (812) 3214771

E-mail: DenisovaIrinaVlad at gmail.com

Address: IPME RAS, V.O., Bolshoy pr., 61, St. Peters­burg, 199178, Russia

Home page: RU EN

Position in IPME RAS:

Leading researcher

Laboratory for Mathematical Modelling of Wave Phenomena

Academic degree:

D.Sc.

Title:

Senior researcher

Date of birth:

29.06.1960

Professional activity:

2014 – present — Leading researcher, Laboratory for Math. Modelling of Wave Phenomena, Institute for Problems in Mechanical Engineering

1997–2014 — Senior researcher, the same laboratory

1992–1996 — Senior researcher at Hydroelasticity laboratory, the same institute

1990–1992 — Researcher at the Laboratory of measuring methods, the same institute

1982–1986 — Engineer at Leningrad Electro-physical Apparatus Institute

Scientific interests:

  • Partial differential equations

  • Mathematical problems of hydrodynamics and hydroelasticity

  • Problems with interfaces and free boundaries

Education

2012 — D.Sc. (mathematics, Differential equations) (St. Peters­burg State University)

1990 — Ph.D. (mathematics, mathematical physics) (Leningrad Department of Steklov Mathematical Institute of the Academy of Sciences of the Soviet Union)

1986–1989 — Graduate course at Leningrad Department of Steklov Math. Institute of the Academy of Sciences of USSR

1977–1982 — M.Sc. (Department of mathematics and mechanics), Leningrad State University

Grants

  • the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007–2013/№ 319012

  • the Funds for International Co-operation under Polish Ministry of Science and Higher Education № 2853/7.PR/ 2013/2

  • Grants of Russian Basic Research Foundation (RBRF) 2001–2002, 2003–2004, 2005–2007, 2008–2011

  • Grant of U.S. Civilian Research and Development Foundation (CRDF) 2004–2006

  • European Science Foundation, Program “Free boundary problems”, 1995 (France); 1996 (Germany)

  • “Cultural Initiative” (Soros Foundation), 1993–1994

  • The DFG Research Group “Equations of Hydrodynamics” (Germany), Sept.–Nov. 1993

Participating in Conference Organizing Committees

  • International conference “Math. Hydrodynamics and Parabolic Equations”, Sept. 2013, St. Peters­burg, Russia

  • International Conference “Navier–Stokes Equations and Related Topics”, Sept. 2002, St. Peters­burg, Russia

  • Intern. Workshop “Free Boundaries in Viscous Flows”, Sept. 1996, St. Peters­burg, Russia

Conferences:

  • International Workshops “Particles in Flows” and “Fluids under Pressure”, Prague, Aug. 2014 and 2016

  • IRSES conference “Towards Regularity”, Warsaw, Poland, Sept., 2016

  • International conferences “Mathematical Fluid Mechanics. Old Problems, New Trends”, Bedlewo, Poland, Sept. 2015

  • International Conferences “Days on Diffraction 2015”, “Days on Diffraction 2016”, St. Peters­burg, Russia

  • International Conference "Vorticity, rotation and symmetry – Approaching limiting cases of fluid flow", Marseille, France, 2014

  • International Conference “Progress in Nonlinear Partial Differential Equations”, the University of Lisbon, Portugal, 2014

  • International Conference on Mathematical Fluid Dynamics, Present and Future, Nov., 2014, Waseda Univ., Tokyo

  • International conference “Nonlinear PDEs in Continuum Mechanics”, Lisbon, Portugal, June 2013

  • RIMS Symposium on Mathematical Analysis of Incompressible Flow, Kyoto, Japan, February 2013

  • International conference “Parabolic and Navier–Stokes Equations”, Poland, Bedlewo, 2006, 2008, 2010, 2012

  • 12th International Conference “Free Boundary Problems: Theory and Applications”, Frauenchimsee, Germany, 11–15 June 2012

  • Russian-French workshop “Mathematical Hydrodynamics” (Irkutsk, Baikal, Russia, 2011)

  • International conference, “Fluid-interaction problems and related topics”, Prague, Czech Republic, 2007

  • 3rd International conference, “Two-Phase System for Ground and Space Applications”, Brussels, Belgium, 2008

  • International I.G. Petrovskii conference “Differential equations and related topics”, Moscow, May, 2007

  • 17th Crimean Autumn Mathematical School-Symposium, Batiliman, Ukraina, Sept. 17–29, 2006

  • International Conference “Geometrical Aspects of Free Boundary Problems”, St. Peters­burg, Russia, August 2006

  • All-Russian Conference “Free Boundary Problems: Theory, Experiment and Applications”, Biisk, Russia, July, 2005

  • 10th International Conference “Free Boundary Problems: Theory and Applications”, Coimbra, Portugal, June, 2005

  • International seminar “Days on Diffraction 2004”, July 2004, St. Peters­burg, Russia

  • International Workshop “Directions on Partial Differential Equations”, Nov. 2003, Ferrara, Italy

  • International Conference “Trends in Partial Differential Equations of Math. Physics”, June 2003, Obidos, Portugal

  • 9th International Conference “Free Boundary Problems: Theory and Applications”, June 2002, Trento, Italy

  • 3rd European Congress on Mathematics, Barcelona (Spain), 2000

  • Congress on Free Boundary Problems, Zakopane (Poland), 1995 and Chiba (Japan), Nov. 1999

  • ICIAM, Gamburg (Germany), July 1995

  • 2nd and 3rd International Conference on the Navier–Stokes Equations (Ferrara, Italy, 1993 and Madeira, Portugal, May 1994)

  • 1st and 3rd Winter Schools on Mathematical Theory in Fluid Dynamics (Prague, Czech. Republ. 1991, 1993)

  • 7th, 8th, 9th Conferences “Nonlinear Problems of Mathematical Physics” (Ukraine, 1989, 1991, 1993)

  • 14th National School on Numerical Methods, Varna, Bulgary, 1988

Profiles in scientific databases and networks:

Scopus

Russian Science Citation Index

ResearchGate

Mathnet.ru

Selected publications:

  • Denisova I.V., Solonnikov V.A., Local and global solvability of free boundary problems for the compressible Navier–Stokes equations near the equilibria, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids II, Springer, 2017.

  • Denisova I.V., Solonnikov V.A., Well-Posedness Of Classical Free Boundary Problems In Viscous Incompressible Fluid Mechanics, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids I, Springer, 2017.

  • Denisova I.V., Global Solvability of the Problem on Two-Phase Capillary Fluid Motion in the Oberbeck–Boussinesq Approximation, Yu. Suzuki and Yo. Shibata (Eds): Mathematical Fluid Dynamics, Present and Future, Springer Proceedings in Mathematics & Statistics, 183 (2016), 49–70. DOI 10.1007/978-4-431-56457-7.

  • Denisova I.V., On energy inequality for the problem on the evolution of two fluids of different types without surface tension, J. Math. Fluid Mech. (Springer), 17, Issue 1 (2015), 183–198 (DOI 10.1007/s00021-014-0197-y).

  • Denisova I.V., Global classical solvability of an interface problem on the motion of two fluids, “RIMS Kokyuroku” series, 1875, Kyoto University (2014), 84–108.

  • Denisova I.V., Global L2-solvability of a problem governing two-phase fluid motion without surface tension, Portugal. Math. 71(1) (2014), 1–24 (DOI 10.4171/PM/1938).

  • Denisova I.V., Solonnikov V.A., Global solvability of a problem governing the motion of two incompressible capillary fluids in a container. Zap. Nauchn. Semin. Peterburg. Otdel. Mat. Inst. Steklov., 397 (2011), 20–52 (English transl. in J. Math. Sci. 185, no. 5 (2012), 668–686).

  • Denisova I.V., Seregin G.A., Uraltseva N.N. and other, Journal article on the occasion of the Jubilee of Vsevolod Alekseevich Solonnikov, Zap. Nauchn. Semin. Peterburg. Otdel. Mat. Inst. Steklov. 362 (2008), 5–14 (English transl. in J. Math. Sci., 159(4), (2009), 385–390).

  • Denisova I.V., Nechasova Sh., Oberbeck–Boussinesq approximation for the motion of two incompressible fluids , Zap. Nauchn. Semin. Peterburg. Otdel. Mat. Inst. Steklov., 362, 2008, 92–119 (English transl. in J. Math. Sci., 159(4), (2009), 436–451).

  • Denisova I.V., Thermo-capillary convection problem for two compressible immiscible fluids, Microgravity - Scien. Technol., 20, no. 3-4 (2008), 287–291.

  • Denisova I.V., Global solvability of a problem on two fluid motion without the surface tension, Zap. Nauchn. Semin. Peterburg. Otdel. Mat. Inst. Steklov. 348 (2007), 19–39 (English transl. in J. Math. Sci., 152(5) (2008) 625–637).

  • Denisova I.V., Model problem connected with the motion of two incompressible fluids, Advances in Math. Sciences and Applications, 17 (2007), no. 1, 195–223.

  • Denisova I.V., Indeytsev D.A. and Klimenko A.V., Stability of a viscoelastic plate in fluid flow, Priklad. Meh. i Tehn. Fizika, 47 (4) (2006), 66–74 (English transl. in J. Appl. Mech. and Technic. Phys., 47 (2006), no. 4, 515–22).

  • Denisova I.V., Problem of thermocapillary convection for two incompressible fluids separated by a closed interface, Progress in Nonlinear Differential Equations and Their Applications, 61 (2005), 45–64 (Birkhauser Verlag, Basel, Switzerland).

  • Denisova I.V., Indeytsev D.A., Klimenko A.V., Stability of an infinite flexible beam under a viscous fluid flow with an exponential profile, Proceedings of the International seminar “Days on Diffraction 2004”, St. Peters­burg Branch of Steklov Math. Inst., (2004), 58–67.

  • Denisova I.V., Solvability in weighted Hoelder spaces for a problem governing the evolution of two compressible fluids, Zap. Nauchn. Semin. Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 295 (2003), 57–89 (English transl. in J. Math. Sci., 127 (2005), no. 2).

  • Denisova I.V., Solonnikov V.A., Classical solvability of a problem on the motion of an isolated mass of a compressible liquid, Algebra i Analiz 14 (2002), no. 1, 71–98 (Russian) (English transl. in St. Peters­burg Math. J. 14 (2003), no. 1, 53–74).

  • Denisova I.V., Solonnikov V.A., Classical solvability of a model problem related to the motion of an isolated mass of compressible fluid. Zap. Nauchn. Semin. Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 271 (2000), 92–113 (English transl. in J. Math. Sci. 115 (2003), no. 6, 2753–2765).

  • Denisova I.V., Evolution of a closed interface between two liquids of different types, Proceedings of the 3d European Congr. Math. in Barcelona, July 2000, Birkhauser Verlag Basel, Progress in Mathematics 202 (2001), 263–272.

  • Denisova I.V., Evolution of compressible and incompressible fluids separated by a closed interface, Interfaces Free Bound., 2(3), (2000) 283–312.

  • Denisova I.V., Problem of the motion of two compressible fluids separated by a closed free interface. Zap. Nauchn. Semin. Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 243, (1997) 61–86 (in Russian) (English transl. in J. Math. Sci. 99(1) (2000), 837–853).

  • Denisova I.V., Solonnikov V.A., Classical solvability of the problem the two viscous incompressible fluids motion, Algebra Anal. 7 (1995), no. 5 (English transl. in St. Peters­burg Math. J. 7(5) (1996) 755–786).

  • Denisova I.V., Problem of the motion of two viscous incompressible fluids separated by a closed free interface, Acta Applicandae Mathematicae, 37 (1994), 31–40.

  • Denisova I.V., Solvability in Hoelder spaces of a linear problem on the motion of two fluids separated by a closed surface, Algebra Anal., 5 (1993), no. 4, p. 122–148 (English transl. in St. Peters­burg Math. J. 5(4) (1994)).

  • Denisova I.V., Solonnikov V.A., Hoelder spaces solvability of a model initial-boundary value problem generated by a problem on the motion of two fluids, Zap. Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 188 (1991), p. 5–44 (English transl. in J. Math. Sci., 70(3) (1994), 1717–1746).

  • Denisova I.V., A priori estimates of the solution of a linear time-dependent problem connected with the motion of a drop in a fluid medium, Trudy Mat. Inst. Steklov, 188 (1990), 3–21 (English transl. in Proc. Steklov Inst. Math., 1991, no. 3, p. 1–24 ).

  • Denisova I.V., Solonnikov V.A., Solvability of the linearized problem on a motion of a drop in a liquid flow, Zap. Nauchn. Semin. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 171 (1989), p. 53–65 (English transl. in J. Soviet Math., v. 56, 1991, n. 2, p. 2309–2316).

  • Denisova I.V., Uraltzeva N.N., A problem with one-sided constraints on the separation surface of two domains, Vestnik Leningrad. Univers. (LGU), 1985, no. 8, 36–42. (English transl. in Vestnik Leningrad University: Mathematics, 1985, v. 18, n. 2, p. 43).