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Abstract. We demonstrate that periodic arrays of single-wall metallic carbon nanotubes 
(CNTs) exhibit electromagnetic wave properties which are strongly different that possessed 
by single CNTs. The distinctive feature of CNT arrays is a hyperbolic dispersion of 
electromagnetic waves, propagating in these structures. Electromagnetic interaction between 
carbon nanotubes leads to dramatic slowdown of eigenwaves in CNT arrays. 
 
 
1. Introduction  
Interest to electromagnetic high-frequency properties of carbon nanotubes is caused by their 
potential applications in nanoelectronics [1], nanoantennas [2-4], polarizers [5], free electron 
lasers [6], devices for THz sensing and imaging [7]. Carbon nanotubes (CNTs), possessing 
metallic properties, are of special interest for nanoelectronics due to their high conductivity at 
THz frequencies compared to metal nanowires [2]. By this reason, their applications seem to 
be promising in THz and infrared ranges due to noticeable lower losses compared to other 
conductive materials.  

One of the most important electromagnetic property of metallic CNTs is a capability to 
support propagation of strongly delayed surface waves [8, 9]. It is caused by a very high 
kinetic inductance of thin single-wall CNTs [10] and it makes electromagnetic (EM) wave 
propagation in CNTs strongly different compared to transmission lines, made of usual bulk 
metals. For description of electromagnetic properties of metallic CNTs, very often the model 
of impedance cylinder and effective boundary conditions is used [9]. The model of impedance 
cylinder takes into account quantum properties of CNTs via the complex surface frequency-
dependent conductivity. This model was applied for theoretical study of CNT transmission 
lines and interconnects [1], structures composed of closely packed bundles of parallel 
identical metallic CNTs [11]. In [12] it was applied for studying two-dimensional periodic 
arrays of single-wall metallic CNTs.  

In this paper we describe briefly the numerical model of the periodic CNT array and 
demonstrate that electromagnetic waves in this structure are characterized by a hyperbolic 
dispersion. The hyperbolic dispersion means that isofrequency surfaces are open and extend 
to infinity in the space of wave vectors. The most important physical consequence of this is 
that waves with any large wave vectors can propagate in media, characterized by the 
hyperbolic dispersion. It means that waves with large wave vector components, which are the 
evanescent (exponentially decaying) waves in usual media, can propagate in hyperbolic media 
(media with the hyperbolic dispersion). Wide class of media and structures belong to 
hyperbolic media (HM). In 1960-th a couple of works, related to waves in an anisotropic 
plasma, characterized by the hyperbolic dispersion, were published (see bibliography in [13]). 
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Some general wave properties of uniaxial media with different signs of components of the 
permittivity tensor, such as a power, radiated by a source, were described in [14]. The 
hyperbolic dispersion is inherent in the TEM (Transverse ElectroMagnetic) wave in periodic 
multi-conductor lines (wire media) (straight line, characterizing its dispersion is the limiting 
case of hyperbola), waves in some periodic pin structures and periodic planar networks, 
composed of transmission lines (all structures, listed above and their dispersion diagrams 
were described in [15]), waves in tangentially magnetized ferrite slabs [16]. A capability of 
HM to support propagation ob backward waves and such a phenomena as a negative 
refraction was discussed in [17]. Now very often HM are referred as indefinite media. This 
term was introduced by D. Smith [18]. Hyperbolic media can be used for a hyperlensing, 
providing a resolution beyond the diffraction limit [19]. Some promising applications are 
based on dramatic increase of density of states in these media that allows the control of 
spontaneous emission [20, 21]. The nature of this phenomenon can be understood if to 
consider two hyperboloids, corresponding to different frequencies in the space of wave 
vectors. One can see that the phase space volume enclosed between hyperboloids is infinite. 
The hyperbolic dispersion for aligned carbon nanotubes composites was predicted in 
framework of the mean-field theory by Mikki and Kishk [22]. For two-dimensional periodic 
arrays of metallic CNTs it was shown using full-wave Green’s function method [12] and the 
effective medium theory [23, 24]. Novel physical effect such a giant radiation heat transfer 
through the gap, filled with carbon nanotubes, was predicted in [25]. 
 
2. Numerical model 
Let us consider EM waves, propagating along a two-dimensional volumetric array of 
infinitely long metallic zigzag CNTs, having the radius r and forming hexagonal lattice with 
the constant d, see Fig. 1. We assume that all nanotubes possess metallic properties. This is 
some kind of idealization since usually, in a process of nanotubes fabrication, about one-third 
of all possible single-wall nanotubes exhibit metallic properties and the remaining two-third 
act as semiconductors. However, this is a realistic assumption in view of recent studies of 
single-wall CNTs [26-28]. For eigenwaves in arrays of infinitely long carbon nanotubes we 
take the space-time dependence of fields and currents as exp(jωt-βz-k⊥⋅r⊥) where k⊥ is the 
wave vector of Floquet-Bloch waves propagating in plane of periodicity r⊥ (the z-axis is 
directed along carbon nanotubes). Carbon nanotubes are classified by the dual index (m,n) and 
for zigzag CNTs n=0. If m=3q, zigzag CNTs possess metallic properties. The radius of such a 
nanotube can be expressed via m and it equals to r=√3 mb/2π where b=0.142 nm. 
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Fig. 1. Hexagonal lattice in space of wave vectors. 
 
As a model of the individual metallic zigzag nanotube, we take impedance cylinder, 
characterized by the complex dynamic conductivity. For frequencies below the optical 
transition band the following simple expression for the axial conductivity can be used [9]:   

2 Igor S. Nefedov



2
02 3

, 3 ,
( )zz

e
j m q

m j


  


  


             (1) 

 
where e is the electron charge, Γ0=2.7 eV is the overlapping integral, τ=1/ν is the relaxation 
time. We neglect the azimuthal currents at the carbon nanotube surface compared to axial one 
which is fully justified for parameters of CNTs chosen below and, consequently, the axial 
component of the magnetic field Hz. This approximation is adequate because of the strong 
anisotropy of the CNT conductivity [9] resulting from quantum effects. It follows from (1) 
that the surface impedance per unit length reads 
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The inductance L has a quantum nature and it is actually the kinetic inductance [29]. Namely 
the positive imaginary part of the surface impedance, i.e. the kinetic inductance, determines 
such a property of CNTs as a capability to support propagation of strongly delayed waves. 
The same relates to graphene in the intraband region [30]. 

The dependence of electric field on transversal coordinates x,y can be presented in the 
form of Floquet-Bloch waves propagating in the plane of periodicity =xx0+yy0 (x0 and y0 

are unit vectors of corresponding coordinate axes), so  
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Here Eln are amplitudes of spatial harmonics. For the hexagonal lattice  
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and for the square lattice γln is replaced by γn and 
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where kx and ky are the components of the wave vector, belonging to the first Brillouin zone. 
Then we use the following representation of electric field induced by currents on the surface 
of CNT: 
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where 0z r r z , k  and   are the wavenumber and the wave impedance in free space, 

respectively, h  is the permittivity of the host medium, L  is the contour of the single carbon 

nanotube. Dyadic Green's function has the form 
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where I  is the unit dyadic, and scalar Green's function has form  
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where Ac is the area of unit cell which equals d2 √3/2 for the hexagonal lattice and we have 

denoted ,x x x   y y y  , ,l x lk q    ,n y nk q   2 s
s dq  , 2 2 2 2
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Due to the strong anisotropy of the CNT conductivity, one can neglect the azimuthal 
current at the nanotube surface. We can neglect the non-homogeneity of the current 
distribution on the contour of the nanotube due to its extremely small radius, so 0( ) zJ J r z . 

Then the vector integral relation (4) is reduced to the scalar form for the z components of 
electric field and current. The electric field at the CNT surface can be expressed via the 

current as ( ) z
z

J
E L

  r . Thus, we obtain the integral equation with respect to the current 

density ( )zJ r . Integrating this equation over the contour of CNT we come to the dispersion 

equation: 
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 where 0 ( )J x  is the zero order Bessel's function. After solving Eq. (7) numerically we can 

find relations between k, kx, ky, β, i.e. calculate dispersion of eigenwaves, propagating in CNT 
arrays in any direction. Conversion of series depends the lattice constant d and for examples, 
considered in this paper, sufficient accuracy is achieved when the maximal number of spatial 
harmonic is taken to be 50-70. 
 
3. Waves in two-dimensional periodic arrays of carbon nanotubes 
Dispersion diagram in the form of slow-wave factor (the ratio of speed of light in vacuum to 
the phase velocity) over the transversal wave vector plane is shown in Fig. 2. The zigzag CNT 
(21,0) is taken as an example, so r≈0.822 nm. Calculations were implemented at 27 THz. The 
slow-wave factor for the surface wave in a single CNT with such a radius equals to 70 and is 
shown by the dashed line. 

 
Fig. 2. Real part of the slow-wave factor Re(β/k) calculated for different lattice constants d. 
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It is remarkable, that the slow-wave factor strongly depends on the transversal wavenumber. 
Namely, at the Г-point (|k⊥|=0)  β/k =1, but for larger |k⊥| the slow-wave factor can strongly 
exceed this value for the single CNT. This result is in agreement with [11] where bundles of 
closely packed metallic CNTs were considered, and it was found that the slow-wave factor for 
azimuthally symmetric guided waves decreases with increase of the number of nanotubes 
tending to unit. It takes place even for the ratio d/2r ≈ 12 (blue curve) where the term “closely 
packed” is not applicable. Evidently, this feature is inherent in azimuthally symmetric waves 
in large quantity of electromagnetically coupled CNTs (which is infinite in the considered 
case) independently on their assembling. Reduction of the lattice period causes increase of the 
electromagnetic interaction between nanotubes resulting in increase of β/k. The most dense 
packing of CNTs in arrays takes place in bundles, where the distance between nanotubes is 
0.334 nm, so the lattice constant d =1.978 nm. In this case the maximal value β/k ≈ 250 is 
achieved near the K-point.  
 Fig. 3 illustrates relation between directions of the phase velocity and the group velocity 
of EM waves in CNT arrays. In this example calculations were implemented for the square 
lattice for simplicity. A vector of the phase velocity vp has the same direction as the wave 
vector in k-space k(kx,β), which starts from the origin of the coordinate system and finishes at 
some point of an isofrequency. The vector of the group velocity vg=gradk(ω) is orthogonal to 
the isofrequency at the point, corresponding to the wave vector. It is remarkable that the group 
velocity is almost orthogonal to the phase velocity. However, due to a discontinuity of the 
CNT array, the isofrequency differs from the hyperbola already if kxd>0.7 [23] and becomes 
qualitatively different from it under a large transversal wave vector component, see Fig. 2. In 
three-dimensional k-space a surface of dispersion is a cone [12]. It follows a very important 
consequence from the hyperbolic dispersion: namely, a slab of vertically-standing finite-
thickness carbon nanotubes supports propagation of backward waves [24], i.e. waves whose 
phase and group velocities have opposite directions.  
 

 

Fig. 3. Isofrequencies in the plane of wave vectors. The lattice constant d=15 nm. 
 
4. Arrays of crossed carbon nanotubes 
In this section we consider EM waves propagation in arrays of crossed carbon nanotubes. As 
a model we take two mutually orthogonal periodic CNT arrays, considered in previous 
sections. It consists of two-dimensional periodic arrays of carbon nanotubes, infinitely long in 
the x and y directions. Actually, it is a three-dimensional periodic structure, see Fig. 4. Let us 
apply first the effective medium model for description of this structure [23]. A periodic 
carbon nanotube array looks similarly to a wire medium (WM) which is an artificial medium 
formed by a lattice of well-conductive thin wires [31].  
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Fig. 4. Schematic view of crossed arrays of CNTs. 
 

Each of crossed arrays can be described in terms of the uniaxial permittivity dyadic. Applying 
this model to both arrays we come to the following form  
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where εzz=εh and the transversal components in the case of identical arrays are expressed  by 
the Drude formula 
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where ξ is the loss coefficient [31]. Here the effective plasma wave number kp for the square 
lattice is defined as [32]  
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where µ0 is the permeability of vacuum and L the inductance of the CNT in array, defined by 
formula (2). Generally, this inductance contains two serially included contributions, the 
kinetic inductance and the electromagnetic inductance [10]. However, for thin nanotubes the 
electromagnetic inductance can be neglected compared to the kinetic one that was shown for 
single CNTs near a ground plane [1, 10] and for CNTs, forming periodic arrays [23]. 

Actually, CNT arrays and WM possess strongly different properties, see [12]. It is 
caused by the spatial dispersion which takes place in WM [33] and is totally suppressed in 
arrays of single-wall CNTs [24]. Dispersion equation for the TM-waves (waves whose vector 
of the magnetic field is orthogonal to the wave vector)) propagating in the xy-plane reads 
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Obviously, the waves cannot propagate if k<kp because εxx<0 and εyy<0. 

Different result is obtained in framework of the numerical model. The same formalism, 
as was used by us for double wire medium [34, 35] can be applied to the structure, formed of 
crossed CNT arrays. In opposite to the effective medium theory, Green’s function method 
[34] predicts propagation of very slow waves in the xy-plane, see Fig. 5. This dispersion 
characteristic was calculated using formulas from [34], modified for the case of a finite, 
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complex, conductivity of carbon nanotubes. The dispersion diagram looks similar to observed 
for the TM-waves in double WM. Relations between directions of the phase and the group 
velocities for both compared structures also are similar [35]. Note, that Green’s function 
model was developed in assumption that wires (carbon nanotubes) are not connected. Similar 
array of connected wires does not support propagation of the TM waves in the plane of wires 
[36]. It is reasonable to expect that similar situation takes place for arrays of CNTs. Namely 
the effective medium theory should describe electromagnetic properties of arrays of mutually 
connected nanotubes, aligned in the xy-plane. At the same time, the model, based on Green’s 
function method, describes an ideal structure, composed of mutually orthogonal, identical 
non-connected carbon nanotubes where all electromagnetically coupled nanotubes guide EM 
waves. In reality one can expect that a part of CNTs are mutually connected. At the same 
time, non-connected CNTs provide guiding of slow waves. Thus, considered above examples 
present two limiting cases and a real structure, containing simultaneously connected and non-
connected carbon nanotubes, will reveal intermediate properties.  

 
Fig. 5. Slow-wave factor versus kx d/π. Propagation in xy-plane, d=25 nm. 

 
5. Conclusions 
In this work we have studied the electromagnetic-wave properties of two- and three-
dimensional periodic arrays of single-wall metallic carbon nanotubes. It was shown that slow-
wave factor of waves, propagating in single periodic arrays of CNTs, can be several times 
larger than in individual CNTs. At the same time, for arrays of crossed, mutually orthogonal 
non-connected CNTs this factor can reach very high values. Such a dramatic slowdown is 
caused by the periodicity and by the electromagnetic interaction between carbon nanotubes. 
We demonstrated that both studied structures belong to hyperbolic metamaterials which 
exhibit a number of novel phenomena. According to our estimations, the most promising for 
applications of CNT arrays seems to be the infrared range (at frequencies below interdand 
transitions in carbon nanotubes) [24]. 

This work has been partially funded by the Academy of Finland and Nokia through the 
Center-of-Excellence program. 
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