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Abstract. The dynamic coupled problem of excitation of harmonic oscillations on the layered
prestressed thermoelastic body surface is considered. The body is under the action of the
oscillating heat flow which is distributed on the surface in a certain region. It is a layer which
is rigidly coupled to a half-space. The layer surface is assumed to be free from mechanical
stress and outside the thermal stress region is thermal insulated. Thermal and mechanical
effects induce initial stress state. The influence of different prestressing cases on the Green
function poles distribution is investigated.

1. Formulation of the problem
We consider layered thermoelastic body, which is exposed to initial stress at uniform
temperature. The initial stress is caused by mechanical and temperature impact. The body is a

layer —h <|x,|<0 which is rigidly coupled to a half-space |x,|<—h. At the bound of layer
and half-space the ideal heat contact condition is assumed. Medium vibration
u={u,U,,us,u,} ({u,,u,,u,} — vector of medium deformation, u, — temperature) is caused
by either distributed on the surface in Q={|x1| <1 |X2|Soo} area tension field or heat flux

-t (@ - circular oscillation frequency, g = {ql,qz,qs,qA} is an extended vector of surface

Ioad, where g, =—-A8uf) is a heat flux). We assume that the surface out of loading region is

stress-free and thermally insulated.
Stress-strain and temperature field relations and heat conduction equation [1-5]:
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Half-space parameters are designated as n=0, layer parameters as n=1.
Elastic and thermal parameters of materials in equations (1)-(2) with existing initial
stress and heating are defined by next relations [3]:
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Further we use the normalized parameters defined by next equations [1, 6]:
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In Egs. (1) — (4) ¢l AV, " B =afVcy) are the components of the elastic

parameters tensor, thermal conductivity tensor, thermal expansion and thermoelasticity
respectively, pi" — is the material density in natural state, ¢ — specific heat capacity at

constant strain. ¢, is the uniform temperature in natural state, z" — is the uniform
temperature in a pre-stressed state, v =1+5", 5" (k=123) — are relative fiber
extensions, E™ — thermoelastic relation constant, " — normalized half-space frequency,
V" — velocity of undeformed material longitudinal wave. The oscillations of the body are of

a steady-state character so all the quantities are represented in the form: f = f,e'“". Asterisks

and exponential factor have been suppressed for the convenience.
The special case when the oscillations are induced in the medium by the heat flux

vertical component g,={0 0 0 g,/ distributed on the surface layer is considered. Then
dimensionless boundary conditions are as follows:
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2. Boundary problem Green’s function
In order to study the effect of initial strain and preheating on Green’s function poles the
considered problem is assumed to be plane, i.e. all field quantities are independent of x,.

u,=0, f:f(xl,xs),axif 0.

2

Taking a one-dimensional Fourier transform along x, axis to Egs. (1)-(2) and (5)-(7)
and it’s solution will find in the form [2, 7]:
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In Egs. (8)-(9) ok are the roots computed numerically for each value of a and w of the
characteristic equation represented in [5,8]. Unknowns are obtained by substituting of (8)-(9)
in the boundary conditions. Therefore, to find C,, Dy we solve a system of linear algebraic

equations:
lc=Q,c'={C, C, C, C, C. C, D D, D} (10)

where Q={0 0 Q, 0 0 0 O O O}, Q,isthe Fourier transform of q,. The
dispersion equation of the problem is: detL =0.
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In egs. (11)
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After finding C,, Dy from (10), the solution of the boundary value problem can be
written as [2, 3]:

uf“’(xl,x3)=%Iki(j)(><1—§,x3,w)q4(§)d§, i:]" 34 (13)
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where K (a,%,, @) are the matrix of Green's function elements, which are obtained from
relations in [8].

3. Properties of the Green’s function depending on the initial stress
The materials chosen for numerical calculations are described in [9]. The physical data for
materials is given below:

0 = 2752-10" N/m?, ¢, = 11.1-10" N/m? ¢, = 27.52-10"° N/m? %, =c, =

Cii11
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8.21-10" N/m?, B9 = p9= 4.6-10° N/K/m?, ¢® = 462 Jkg/K, AP =18 = 47.0 W/im/K,
p®= 7823 kgim®, 7, = 280 K, ¥ = 30.0-10"° N/m?, 9, = 10.1-10" N/m? (2, =
30.0-10"° N/m?, ¢ =, = 15.75-10" N/m?, g = g9 = 4.4-10° N/K/Im? ¢ =875
Ikg/K, 29 =19 =58,00W/m/K, p©=23576 kg/m”’.

A feature of the thermoelastic body problems is the existence of a denumerable set of
complex zeros and poles in the elements of function K’ (a, 0,) [10]. Some of these possess
a small imaginary part [8]. In order to construct solutions and effective investigation of the

layered body dynamics requires a detailed study of the behavior of the poles, depending on
the initial stress and pre-heating.

The calculated in a limited frequency range poles of the Green functions K" (a,O, o)

with small imaginary part that play a decisive role in shaping the dynamic characteristics of
the medium are shown on Fig. 1-2. On the axes are marked following dimensionless
parameters: « is wavenumber, @ is normalized circular oscillation frequency. Fig. 1 shows
the first five modes of the dispersion curves of layered thermoelastic half in the absence of
initial deformations and heating. Fig. 2 shows the dispersion curves in the presence of the
initial hydrostatic tension (a) and preheating (b). Poles for an unstrained environment marked
by solid lines, for a medium with initial stresses - intermittent.
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Fig. 2. Effect of hydrostatic initial strain and preheat to layered medium dispersion curves
a) v=1.01; b) dt =0.1.

Figure 1 shows that the poles with small imaginary part of the unstrained layered
thermoelastic medium behave like poles of a layered elastic medium. Diagrams are stacked on
the line between Rayleigh wave mode «, in a homogeneous half-space with a layer material

parameters and shear wave ¢, produced in a homogeneous half-space.
Figure 2 shows that the initial stresses and heat significantly influence on the Green’s
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function poles with small imaginary part distribution. Hydrostatic tension increases the phase
velocity of waves in thermoelastic layered body, pre-heating reduces.
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