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Abstract. The dynamic coupled problem of excitation of harmonic oscillations on the layered 

prestressed thermoelastic body surface is considered. The body is under the action of the 

oscillating heat flow which is distributed on the surface in a certain region. It is a layer which 

is rigidly coupled to a half-space. The layer surface is assumed to be free from mechanical 

stress and outside the thermal stress region is thermal insulated. Thermal and mechanical 

effects induce initial stress state. The influence of different prestressing cases on the Green 

function poles distribution is investigated. 

 

 

1. Formulation of the problem 

We consider layered thermoelastic body, which is exposed to initial stress at uniform 

temperature. The initial stress is caused by mechanical and temperature impact. The body is a 

layer 3 0h x    which is rigidly coupled to a half-space 
3x h  . At the bound of layer 

and half-space the ideal heat contact condition is assumed. Medium vibration 

 1 2 3 4, , ,u u u uu  ( 1 2 3{ , , }u u u  – vector of medium deformation, 4u  – temperature) is caused 

by either distributed on the surface in  1 21,x x    area tension field or heat flux 

i te 
q  (  - circular oscillation frequency,  1 2 3 4, , ,q q q qq  is an extended vector of surface 

load, where (1) (1)

4 3 4,3q u   is a heat flux). We assume that the surface out of loading region is 

stress-free and thermally insulated. 

Stress-strain and temperature field relations and heat conduction equation [1-5]: 
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Half-space parameters are designated as 0n  , layer parameters as 1n  . 

Elastic and thermal parameters of materials in equations (1)-(2) with existing initial 

stress and heating are defined by next relations [3]:  
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Further we use the normalized parameters defined by next equations [1, 6]: 
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In Eqs. (1) – (4) ( )n

ijklc , ( )n

ij , ( )n

ij , ( ) ( ) ( )n n n

kl ij ijklc   are the components of the elastic 

parameters tensor, thermal conductivity tensor, thermal expansion and thermoelasticity 

respectively, ( )

0

n  – is the material density in natural state, ( )nc  – specific heat capacity at 

constant strain. 0  is the uniform temperature in natural state, ( )

1

n  – is the uniform 

temperature in a pre-stressed state, ( ) ( )1
k k

n n   , ( )

k

n  ( 1,2,3k  ) – are relative fiber 

extensions, ( )n  – thermoelastic relation constant, *  – normalized half-space frequency, 
( )n

PV  – velocity of undeformed material longitudinal wave. The oscillations of the body are of 

a steady-state character so all the quantities are represented in the form: 0

i tf f e  . Asterisks 

and exponential factor have been suppressed for the convenience. 

The special case when the oscillations are induced in the medium by the heat flux 

vertical component  0 400 0 0 qq  distributed on the surface layer is considered. Then 

dimensionless boundary conditions are as follows: 
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3x  : (0) 0 u .             (7) 

 

2. Boundary problem Green’s function 

In order to study the effect of initial strain and preheating on Green’s function poles the 

considered problem is assumed to be plane, i.e. all field quantities are independent of x2:  
 

2 0u  , 1 3

2

( , ), 0f f x x f
x


 


. 

 

Taking a one-dimensional Fourier transform along 1x  axis to Eqs. (1)-(2) and (5)-(7) 

and it’s solution will find in the form [2, 7]: 
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In Eqs. (8)-(9) σk are the roots computed numerically for each value of α and ω of the 

characteristic equation represented in [5,8]. Unknowns are obtained by substituting of (8)-(9) 

in the boundary conditions. Therefore, to find kC , Dk we solve a system of linear algebraic 

equations: 
 

QLC  ,  
321654321

DDDCCCCCC
C ,      (10) 

 

where  40 0 0 0 0 0 0 0QQ , 4Q  is the Fourier transform of 40q . The 

dispersion equation of the problem is: det 0L . 
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In eqs. (11)  
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After finding kC , Dk from (10), the solution of the boundary value problem can be 

written as [2, 3]:  
 

     
1

( ) ( )

1 3 4 1 3 4

1

1
, , ,

2

n n

i iu x x k x x q d   




  , i = 1, 3, 4,      (13) 

 

   ( ) ( )

4 3 4 3, , , ,n n i s

i ik s x K x e d   



  ,         (14) 

 

where  ( )

4 3, ,n

iK x   are the matrix of Green's function elements, which are obtained from 

relations in [8]. 
 

3. Properties of the Green’s function depending on the initial stress 

The materials chosen for numerical calculations are described in [9]. The physical data for 

materials is given below: 
(1)

1111с = 27.52  10
10

 N/m
2
, (1)

1133с  = 11.1  10
10

 N/m
2
, (1)

3333с  = 27.52  10
10

 N/m
2
, (1) (1)

1331 3113с с  = 
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8.21  10
10

 N/m
2
, (1) (1)

11 33  = 4.6  10
6
 N/K/m

2
, (1)с  = 462 J/kg/K, (1) (1)

11 33   = 47.0 W/m/K, 

(1) = 7823 kg/m
3
, 0  = 280 K, (0)

1111с = 30.0  10
10

 N/m
2
, (0)

1133с  = 10.1  10
10

 N/m
2
, (0)

3333с  = 

30.0  10
10

 N/m
2
, (0) (0)

1331 3113с с  = 15.75  10
10

 N/m
2
, (0) (0)

11 33  = 4.4  10
6
 N/K/m

2
, (0)с  = 875 

J/kg/K, (0) (0)

11 33   = 58.0 0 W/m/K, (0) = 3576 kg/m
3
. 

A feature of the thermoelastic body problems is the existence of a denumerable set of 

complex zeros and poles in the elements of function  ( )

4 ,0,n

iK   [10]. Some of these possess 

a small imaginary part [8]. In order to construct solutions and effective investigation of the 

layered body dynamics requires a detailed study of the behavior of the poles, depending on 

the initial stress and pre-heating. 

The calculated in a limited frequency range poles of the Green functions  ( )

4 ,0,n

iK    

with small imaginary part that play a decisive role in shaping the dynamic characteristics of 

the medium are shown on Fig. 1-2. On the axes are marked following dimensionless 

parameters:   is wavenumber,   is normalized circular oscillation frequency. Fig. 1 shows 

the first five modes of the dispersion curves of layered thermoelastic half in the absence of 

initial deformations and heating. Fig. 2 shows the dispersion curves in the presence of the 

initial hydrostatic tension (a) and preheating (b). Poles for an unstrained environment marked 

by solid lines, for a medium with initial stresses - intermittent. 
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Fig. 1. Unstrained layered medium Green’s function poles. 
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Fig. 2. Effect of hydrostatic initial strain and preheat to layered medium dispersion curves 

a) ν=1.01; b) dt =0.1. 
 

Figure 1 shows that the poles with small imaginary part of the unstrained layered 

thermoelastic medium behave like poles of a layered elastic medium. Diagrams are stacked on 

the line between Rayleigh wave mode R  in a homogeneous half-space with a layer material 

parameters and shear wave s  produced in a homogeneous half-space. 

Figure 2 shows that the initial stresses and heat significantly influence on the Green’s 

45Some properties of the thermoelastic prestressed medium Green function 



function poles with small imaginary part distribution. Hydrostatic tension increases the phase 

velocity of waves in thermoelastic layered body, pre-heating reduces. 
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