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Abstract. The effect of non-homogeneity in a magneto electro elastic plate of polygonal cross 

sections is studied using the linear theory of elasticity. The wave equation of motion based on 

two-dimensional theory of elasticity is applied under the plane strain assumption of plate of 

polygonal shape, composed of non-homogeneous transversely isotropic material. The 

frequency equations are obtained by satisfying the irregular boundary conditions of the 

polygonal plate using Fourier expansion collocation method. The analytical results obtained 

in the physical domain have been computed numerically for Triangle, Square, Pentagon and 

Hexagonal plates. The results for stress, strain, displacements, induced electric and magnetic 

fields have been presented graphically.  

Keywords: magneto-electro elastic cylinder, solid with polygonal cross sections, Fourier 

expansion collocation method, stresses/vibration, transducers, sensors/actuators, 

MEMS/NEMS 

 

 

I. Introduction 

The three dimensional vibration in plates of polygonal cross section made of smart and 

intelligent materials has considerable importance for a long time. The electro-magneto-elastic 

materials exhibit a desirable coupling effect between electric and magnetic fields, which are 

useful in smart structure applications. These materials have the capacity to react 

corresponding response due to the external stimulation and impulse load. The advantages of 

non homogeneous material still remain the structural integrity than the conventional 

composite materials under severe conditions. The composite consisting of piezoelectric and 

piezomagnetic have found increasing application in engineering structures, particularly in 

smart/intelligent structure system. The magneto-electro-elastic materials are used as magnetic 

field probes, electric packing, acoustic, hydrophones, medical, ultrasonic image processing, 

sensors and actuators with the responsibility of magnetic-electro-mechanical energy 

conversion.  

Recently, many researchers have devoted their attention to the mechanics problems of 

transversely isotropic material connected with magneto-electro-elasticity. Ahmadi and 

Eskandari [1] investigated the vibration analysis of a rigid circular disk embedded in a 

transversely isotropic solid. Green’s functions of a surface-stiffened transversely isotropic 

half-space were developed by Eskandari and Ahmadi [2]. Ahmadi and Eskandari [3] studied 

the axisymmetric circular indentation of a half-space reinforced by a buried elastic thin film. 

Eskandari et al. [4] analyzed the time-harmonic response of a surface stiffened transversely 

isotropic half-space. Weaver et al. studied the transient elastic waves in a transversely 
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isotropic Plate, Haojiang et al. [5] investigated the free axisymmetric vibration of transversely 

isotropic piezoelectric circular plates 

Pan [6] and Pan and Heyliger [7] analyzed the three-dimensional behavior of 

magnetoelectroelastic laminates under simple support boundary conditions. An exact solution 

for magnetoelectroelastic laminates in cylindrical bending has also been obtained by Pan and 

Heyliger [8]. Pan and Han [9] studied the exact solution for functionally graded and layered 

magneto-electro-elastic plates. Feng and Pan [10] discussed the dynamic fracture behavior of 

an internal interfacial crack between two dissimilar magneto-electro-elastic plates. 

Buchanan [11] developed the free vibration of an infinite magneto-electro-elastic cylinder. 

Dai and Wang [12, 13] have studied thermo-electro-elastic transient responses in piezoelectric 

hollow structures and hollow cylinder subjected to complex loadings. Annigeri et al. [14 – 15] 

studied respectively, the free vibration of clamped-clamped magneto-electro-elastic 

cylindrical shells, free vibration behavior of multiphase and layered magneto-electro-elastic 

beam, free vibrations of simply supported layered and multiphase magneto-electro-elastic 

cylindrical shells. Gao and Noda [16] presented the thermal-induced interfacial cracking of 

magnetoelectroelastic materials. Hon et al. [17] analyzed a point heat source on the surface of 

a semi-infinite transversely isotropic electro-magneto-thermo-elastic material. The dynamic 

response of a heat conducting solid bar of polygonal cross section subjected to moving heat 

source is discussed by Selvamani [18] using the Fourier expansion collocation method 

(FECM).The wave propagation in a magneto-thermo elastic wave in a transversely isotropic 

cylindrical panel using the wave propagation approach were investigated by Ponnusamy and 

Selvamani [19]. Recently, Selvamani and Ponnusamy [20] have studied the wave propagation 

in a generalized piezothermoelastic rotating bar of circular cross-section using three-

dimensional linear theory of elasticity. 

Bin et al. [21] analyzed the wave propagation in non-homogeneous magneto-electro-

elastic plates. Chen et al. [22] worked on free vibration of non-homogeneous transversely 

isotropic magneto-electro-elastic plate. Chakraverty et al. [23] studied the flexural vibrations 

of non-homogeneous elliptic plates. Tanigawa [24] presented some basic thermoelastic 

problems for nonhomogeneous structural materials. Li [25] discussed the 

magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in 

composite materials. Kong et al. [26] presented the thermo-magneto-dynamic stresses and 

perturbation of magnetic field vector in a non-homogeneous hollow cylinder. Ding et al. [27] 

and Hou et al. [28] presented an analytical solution to solve the transient responses of a 

special non-homogeneous pyroelectric hollow cylinder for piezothermoelastic axisymmetric 

plane strain dynamic problems. Ibrahim [29] provided a finite element method to solve the 

thermal shock problem in a non-homogeneous isotropic hollow cylinder with two relaxation 

times. 

In this paper, the effect of magnetic field and non-homogeneity in a piezoelectric plate 

of polygonal cross sections is studied using the linear theory of elasticity. The frequency 

equations are obtained by satisfying the irregular boundary conditions of the polygonal plate 

using Fourier expansion collocation method. The analytical results obtained in the physical 

domain have been computed and the numerically analyzed results for the stress, strain, 

displacements and induced electric and magnetic fields have been presented graphically.  

 

2. Formulation of the Problem 
We consider a homogeneous transversely isotropic magneto-electro-elastic plate of polygonal 

cross-sections as shown in Fig. 1. The system displacements and stresses are defined by the 

cylindrical coordinates r,   and z. The governing equations of motion of the electric and 

magnetic conduction in the absence of body force are taken from Selvamani and 

Ponnusamy [22] 

Effect of non-homogeneity in a magneto electro elastic plate of polygonal cross-sections 85



 

.
21

,
11

2

2

2

2

t

v

rrr

t

u

rrr

r

r

rr

rrr













































 (1) 

The equation of electric conduction is given by: 
1 1

, , , 0r r rD r D r D 

    . (2) 

The equation of Magnetic conduction is given by: 
1 1

, , 0r r rB r B r B 

    , (3) 

where: 
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And: 
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where , ,rr r     are the stress components, 11 12,c c and 66c  are elastic constants, 11 are the 

dielectric constants, 11  are the magnetic permeability coefficients, 31 33 15, ,e e e  are the 

piezoelectric material coefficients, 11m  are the magnetoelectric material coefficients,   is the 

density of the material, ,rD D  are the electric displacements, ,rB B  are the magnetic 

displacements components. The strain ije  are related to the displacements corresponding to 

the cylindrical coordinates are given by 
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where u  and v  are the mechanical displacements along the radial and circumferential 

directions. 

The Electric field vector iE  is related to the electric potential E as: 

r

E
E

r


 


, 

1 E
E

r





 


. (8) 

Similarly, the magnetic field vector iH  is related to the magnetic potential H as 

r

H
H

r


 


, 

1
.

H
H

r





 


 (9) 

Substituting Eqs. (7) – (9) in Eqs. (1) – (6), we obtain the following stress displacement 

relations: 

11 12

1
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u v u
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The elastic constants 11 12 66, ,c c c , magnetic permeability coefficient 11 , 

electromagnetic material coefficient 11m , density   are characterized in terms of non-

homogeneity of the material as follows: 
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where ' , , VVL  and 11110 ' ,' ,  m  are constants of homogeneous matter and m is the rational 

number. Substituting Eq. (11) in Eq. (10) we obtain the stress displacement equations for 

nonhomogeneous medium: 
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Substituting the Eq. (12) in the Eqs. (1) - (3), we obtain the set of displacement 

equations 

 

 

2 2 2

2 2 2 2 2

2

2

1 1 1 2 1 2 3 1

2 2 2

2 1
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L V u
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m u v u u
L V L
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 (13a) 

Effect of non-homogeneity in a magneto electro elastic plate of polygonal cross-sections 87



2 2

2 2 2

2 2

2 2 2

1 1 2 2 3 1

2 2

1

V v v L V u L V u
v

r r r r r r r

L V v Vm v v u v

r r r r r t

 


 

           
         

          

        
        

       

 (13b) 

2 2 2 2
' ' ' '

11 11 11 112 2 2 2 2 2

1 1 1 1 2
0

E E E H H H m E H
m m

r r r r r r r r r r r
 

 

            
             

            
 (13c) 

2 2 2 2
' ' ' '

11 112 2 2 2 2 2

1 1 1 1 2
0

E E E H H H m E H
m V m V

r r r r r r r r r r r 

            
             

            
 (13d) 

 

3. Solution of the problem 

The Eqs. (13) is a coupled partial differential equation with three displacements and magnetic 

and electric conduction components. To uncouple the Eqs. (13), we seek the solution in the 

following form: 

   1

, ,, n n n ru r r      , 

   1

, ,, n n n rv r r       , 

  ,, n n zw r W  , (14) 

  ,, n n zE r E  ,
 

  ,, n n zH r H  , 

where  ,n r  ,  ,n r  ,  ,nW r  ,  ,nE r   and  ,nH r   are the displacement potentials. 

Substituting the Eq. (14) in (13), we get  

 
2

2

1 02 2
2 0n n

n n

L V L
L V m

r r r t

 
  

  
      

  
, (15a) 

' 2 ' 2 ' '

11 1 11 1 11 11

2
0n n

n n

E Hm
E m H m

r r r
 

  
     

  
, (15b) 

' 2 ' 2 ' '
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E Hm
m E V H m V

r r r

  
      

  
, (15c) 

and 

2

1

1
0

2

n n
n

V
Vm

r r r

 


 
    

 
, (16) 

where 
2 2

2

1 2 2 2

1 1
.

r r r r 

  
   

  
 

We consider the free vibration of non homogeneous polygonal cross-sectional plate and 

we seek the displacement function, electric and magnetic displacement function as: 

   , , cosm i t

nn r t r r n e     , 

   , , cosm i t

n nE r t r E r n e  , (17) 

   , , cosm i t

n nH r t r H r n e  , 

and 

   , , cos .m i t

n nr t r r n e     (18) 
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Using the Eqs. (17) and (18) in the Eqs. (15) and (16), we get 

   
  

 
2 2

2 2
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which is reduced as  

      '' ' 2 2 21
0

n n nr r r r
r

       , (20)

 

where 
  2 2

2 2
2 20

2
, .

m n mLa

L V L V

 
 


 

 
 

Equation (20) is Bessel equation with order   and its solution is given by:  

      
1

'

1 cos 0
nn nr A J r A Y r n       , (21) 

where 1nA  and 
1

'

n
A  are arbitrary constants and  J r   and  Y r   are the Bessel functions 

of first and second kind of order 
 

respectively. 

Substituting Eq. (18) in to Eq. (16), we get
 

       
2 2

'' ' 2 20

2

21 1
4 4 0

n n n

a
r r m n n r

r V r

 
  

 
     

 
, (22)

 
which is reduced to 

      '' ' 2 2 21
0.

n n nr r k r r
r

       (23)

 
Equation (23) is Bessel equation with order and its solution is given by  

      
4

'

4 sin 0
nn nr A J r A Y r n       , (24) 

where 4nA  and 
4

'

n
A  are arbitrary constants and  J r   and  Y r   are the Bessel functions 

of first and second kind of order
 

respectively. 

Substituting Eq. (17) in to Eqs. (15), we get
  

   
2 2 2 2' ' ' '

' '11 11 11 11
11 112 2 2 2 2 2

2 1 2 1 0n n n n n nE E E H H Hm
m m m

r r r r r r r r

  


 

        
          

        
, (25) 
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' '' ' ' '' '

11 2 2

1 1
0n n n n n n

m n m n
m E r E r E r V H r H r H r

r r r r

    
        
   
   

, (26)

 
which will reduced in to  the convenient form: 

           
2 2

' '' ' ' '' '

11 112 2

1 1
0n n n n n n

p p
E r E r E r m H r H r H r

r r r r


   
        

   
, (27) 

           
2 2

' '' ' ' '' '

11 2 2

1 1
0n n n n n n

p p
m E r E r E r V H r H r H r

r r r r

   
        

   
, (28) 

where

 

 
2 2 2.p m n   

Solving Eq. (27) and Eq. (28), we can get 

     
2

'' '

2

1
0n n n

p
E r E r E r

r r
   , (29) 

     
2

'' '

2

1
0.n n n

p
H r H r H r

r r
    (30) 
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The general solution of Eqs. (29) and (30) are as follows: 

    ,cos,, 22

iwtp

n

p

nn enrArAtrE    (31) 

    ,cos,, 33

iwtp

n

p

nn enrArAtrH    (32) 

where nnnn AAAA 3322 ,,,   are the arbitrary constants. 

The general solution of the non-homogeneous solid plate of polygonal cross sections is 

as:  

   1, , cosn nr t A J r n    , (33a)
 

  2, , cosp

n nE r t A r n  , (33b)
 

  3, , cosp

n nH r t A r n  , (33c)
 

   1, , sin .n nr t A J kr n    (33d) 

 

4. Boundary condition and frequency equations  

In this problem, the vibration of polygonal cross-sectional plate is considered. Since the 

boundary is irregular in shape, it is difficult to satisfy the boundary conditions along the 

surface of the plate directly. Hence, the Fourier expansion collocation method is applied to 

satisfy the boundary conditions. For the plate, the normal stress xx  and shearing stresses 

,xy xz  , the electric field rD  and the magnetic field rB  is equal to zero for stress free 

boundary, and for rigidly fixed boundary, the displacements along the radial direction ru , 

along the circumferential direction u , and the electric field E, and the magnetic field H is 

equal to zero. Thus the following types of boundary conditions are assumed for the plate of 

polygonal cross-section is 

(i) Stress free(unclamped edge), which leads to 

          0xx xy xz r ri i i ii
D B       ; (34) 

(ii) Rigidly fixed(clamped edge), implies that 

        0r i i i i
u u E H    , (35) 

where xx  is the normal stress, ,xy xz   are the shearing stresses, rD  is the electric field, rB  

is the magnetic field and the bracket  
i
 is the value at the boundary i . Similarly ,ru u  are 

displacements along the radial and circumferential direction, E and H are respectively the 

electric and magnetic displacements in the thi  segment of the polygonal cross-sectional plate. 

Since the vibration displacements are expressed in terms of the coordinates r and  , it is 

convenient to treat the boundary conditions when the derivatives in the equations of the 

stresses are transformed in terms of the coordinates r and   instead of the coordinates ix  and 

iy . The relations between the displacements are as follows for thi  segment of straight-line 

boundaries 

   

   .sincos

,sincos

iriy

iirx

uuu

uuu












 (36) 

Since the angle i  between the reference axis and normal of the thi  boundary has a 

constant value in a segment i , we obtain: 
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                                                                         (37) 

Using the Eqs. (36) and (37), the normal and shearing stresses are transformed as: 

         

    

2 2 1 2 2

11 12 , 11 12 ,

1

66 , , 13 , 31 , 31 ,

cos sin sin cos

sin 2 0

xx i i r i i

r i z zz zz

c c u r c c u v

c r v u v c w e E q H





        

 





        

       
 

          1 1

66 , , , ,sin 2 cos 2 0xy r i r ic u r v u r u v v                

             

    

1 1

44 , , , , 15 , ,

1

15 , ,

cos sin cos sin

cos sin 0

xz z r i z i r i i

r i i

c u w v r w e E r E

q H r H

 



        

   

 



         

    

11 11 0x

E H
D m

r r


 
   

 
, 11 11' ' 0.x

E H
B m

r r


 
   

 
 (38) 

Imposing non-homogeneity to the Eq. (38), we can get the following mechanical, 

magnetic and electric stress equations : 

             

    

2 2 1 2 2

, ,

1

66 , , 13 , 31 , 31 ,

cos sin sin cos

sin 2 0

xx i i r i i

r i z zz zz

L V L u r L V L u v

c r v u v c w e E q H





        

 





          

       

          1 1

, , , ,sin 2 cos 2 0
2

xy r i r i

V
u r v u r u v v              

 

11 11 0x

E H
D m

r r


 
   

 
 

11 11 0.x

E H
B m

r r


 
   

 
 (39)

  
Substituting the Eqs. (33a) - (33d) in the Eq. (34), the boundary conditions are 

transformed for stress free non-homogeneous polygonal cross-sectional plate as follows:  

    i t
xxxx i i

S S e  
 

 

    i t
xyxy i i

S S e  
 

 

    i t
xx i i

E E e  
 

 

    i t
xx i i

H H e  
 

, 

where 

   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 30 4

1

0.5xx n n n n n n n

n

S A e A e A e A e A e A e A e




        

   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 30 4

1

0.5xy n n n n n n n

n

S A f A f A f A f A f A f A f




        

   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 30 4

1

0.5xz n n n n n n n

n

S A g A g A g A g A g A g A g




        

   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 30 4

1

0.5 n n n n n n n

n

E A h A h A h A h A h A h A h
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   1 2 3 1 2 3 4

10 0 20 0 30 0 1 2 30 4

1

0.5 n n n n n n n

n

H A i A i A i A i A i A i A i




        (40) 

 5 1 2 3 4

500 1 2 30 4

1

0.5xx n n n nn n n

n

S e A A e A e A e A e




      

 5 1 2 3 4

50 1 2 30 40

1

0.5xy n n nn n n n

n

S f A A f A f A f A f




      

 5 1 2 3 4

50 1 2 30 40

1

0.5xz n n nn n n n

n

S g A A g A g A g A g




      

 5 1 2 3 4

500 1 2 30 4

1

0.5 n n n nn n n

n

E h A A h A h A h A h




      

 5 1 2 3 4

500 1 2 30 4

1

0.5 .n n n nn n n

n

H i A A i A i A i A i




      (41)

 

The coefficients 
i

n

i

n ie


~  are given in the Appendix A. 

Performing the Fourier series expansion to Eq. (35) along the boundary, the boundary 

conditions along the surface are expanded in the form of double Fourier series. In the 

symmetric mode, the boundary conditions are obtained as:  

 1 2 3 4 1 2 3 4 5

0 10 0 20 0 30 0 40 1 2 3 4 5

0 1

0m m m m m mn n mn n mn n mn n mn n

m n

E A E A E A E A E A E A E A E A E A
 

 

 
         

 
   

 1 2 3 4 1 2 3 4 5

0 10 0 20 0 30 0 40 1 2 3 4 5

0 1

0m m m m m mn n mn n mn n mn n mn n

m n

F A F A F A F A F A F A F A F A F A
 

 

 
         

 
    

 1 2 3 4 1 2 3 4 5

0 10 0 20 0 30 0 40 1 2 3 4 5

0 1

0m m m m m mn n mn n mn n mn n mn n

m n

G A G A G A G A G A G A G A G A G A
 

 

 
         

 
   

 1 2 3 4 1 2 3 4 5

0 10 0 20 0 30 0 40 1 2 3 4 5

0 1

0m m m m m mn n mn n mn n mn n mn n

m n

H A H A H A H A H A H A H A H A H A
 

 

 
         

 
   

 1 2 3 4 1 2 3 4 5

0 10 0 20 0 30 0 40 1 2 3 4 5

0 1

0m m m m m mn n mn n mn n mn n mn n

m n

I A I A I A I A I A I A I A I A I A
 

 

 
         

 
  . (42) 

Similarly, for the antisymmetric mode, the boundary conditions are expressed as:  

 5 1 2 3 4 5

0 50 1 2 3 4 5

0 1

0m mn n mn n mn n mn n mn n

m n

E A E A E A E A E A E A
 

 

 
      

 
   

 5 1 2 3 4 5

0 50 1 2 3 4 5

0 1

0m mn n mn n mn n mn n mn n

m n

F A F A F A F A F A F A
 

 

 
      

 
   

 5 1 2 3 4 5

50 1 2 3 4 50

0 1

0n n n n nm mn mn mn mn mn

m n

G A G A G A G A G A G A
 

 

 
      

 
   

 5 1 2 3 4 5

0 50 1 2 3 4 5

0 1

0m mn n mn n mn n mn n mn n

m n

H A H A H A H A H A H A
 

 

 
      

 
   

 5 1 2 3 4 5

0 50 1 2 3 4 5

0 1

0m mn n mn n mn n mn n mn n

m n

I A I A I A I A I A I A
 

 

 
      

 
  , (43) 

where 

 
1

1

2
, cos

i

i

I
j jn

mn n i

i

E e R m d






  






 
  
 

   

 
1

1

2
, sin

i

i

I
j jn

mn n i

i

F f R m d
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1

1

2
, cos

i

i

I
j jn

mn n i

i

G g R m d






  






 
  
 

   

 
1

1

2
, cos

i

i

I
j jn

mn n i

i

H h R m d






  






 
  
 

   (44) 

 
1

1

2
, sin

i

i

I
j j

n
mn n i

i

E e R m d






  






 
  
 

   

 
1

1

2
, cos

i

i

I
j j

n
mn in

i

F f R m d






  






 
  
 

   

 
1

1

2
, sin

i

i

I
j j

n
mn in

i

G g R m d






  






 
  
 

   

 
1

1

2
, sin

i

i

I
j j

n
mn n i

i

H h R m d






  






 
  
 

  , (45) 

where j=1,2,3,4, I is the number of segments, iR  is the coordinate r at the boundary and N is 

the number of truncation of the Fourier series. The frequency equations are obtained by 

truncating the series to N+1 terms, and equating the determinant of the coefficients of the 

amplitude 0inA   and 0inA  (i=1,2,3,4), for symmetric and anti symmetric modes of 

vibrations. When the plate is symmetric about more than one axis, the boundary conditions in 

the case of symmetric mode can be written in the form of matrix as given below: 
1 2 3 4 1 1 2 2 3 3 4 4 5 5

00 00 00 00 01 0 01 0 01 0 01 0 01 0

1 2 3 4 1 1 2 2 3 3 4 4 5 5

0 0 0 0 1 1 1 1 1

1 2 3 4 1 1 2 2 3 3 4 4 5

00 00 00 00 01 0 01 0 01 0 01 0 01 0

0

0

0

N N N N N

N N N N N NN N NN N NN N NN N NN

N N N N N

E E E E E E E E E E E E E E

E E E E E E E E E E E E E E

F F F F F F F F F F F F F F 5

1 2 3 4 1 1 2 2 3 3 4 4 5 5

0 0 0 0 1 1 1 1 1

1 2 3 4 1 1 2 2 3 3 4 4 5 5

00 00 00 00 01 0 01 0 01 0 01 0 01 0

1 2 3 4 1 1 2 2 3 3

0 0 0 0 1 1 1

0

0

0

N N N N N NN N NN N NN N NN N NN

N N N N N

N N N N N NN N NN N NN

F F F F F F F F F F F F F F

G G G G G G G G G G G G G G

G G G G G G G G G G G4 4 5 5

1 1

1 2 3 4 1 1 2 2 3 3 4 4 5 5

00 00 00 00 01 0 01 0 01 0 01 0 01 0

1 2 3 4 1 1 2 2 3 3 4 4 5 5

0 0 0 0 1 1 1 1 1

1 2 3 4 1 1 2 2 3 3

00 00 00 00 01 0 01 0 01 0

0

0

0

N NN N NN

N N N N N

N N N N N NN N NN N NN N NN N NN

N N N

G G G

H H H H H H H H H H H H H H

H H H H H H H H H H H H H H

I I I I I I I I I I

10

20

30

40

50

11

1

21

2

4 4 5 5
5101 0 01 0

1 2 3 4 1 1 2 2 3 3 4 4 5 5
50 0 0 0 1 1 1 1 10

N

N

N N

NN N N N N NN N NN N NN N NN N NN

A

A

A

A

A

A

A

A

A

AI I I I

AI I I I I I I I I I I I I I

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
 
 
 
 
    

0




















 
 
 
 
 
  

 (46) 

Similarly, the matrix for the antisymmetric mode is obtained as: 
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5 1 1 2 2 3 3 4 4 5 5

10 11 1 11 1 11 1 11 1 11 1

5 1 1 2 2 3 3 4 4 5 5

0 1 1 1 1 1

5 1 1 2 2 3 3 4 4 5 5

10 11 1 11 1 11 1 11 1 11 1

5 1 1 2 2 3 3

0 1 1 1

N N N N N

N N NN N NN N NN N NN N NN

N N N N N

N N NN N NN N NN

E E E E E E E E E E E

E E E E E E E E E E E

F F F F F F F F F F F

F F F F F F F
4 4 5 5

1 1

5 1 1 2 2 3 3 4 4 5 5

10 11 1 11 1 11 1 11 1 11 1

5 1 1 2 2 3 3 4 4 5 5

0 1 1 1 1 1

5 1 1 2 2 3 3 4 4 5 5

10 11 1 11 1 11 1 11 1 11 1

5 1 1

0 1

N NN N NN

N N N N N

N N NN N NN N NN N NN N NN

N N N N N

N N NN

F F F F

G G G G G G G G G G G

G G G G G G G G G G G

H H H H H H H H H H H

H H H
2 2 3 3 4 4 5 5

1 1 1 1

5 1 1 2 2 3 3 4 4 5 5

10 11 1 11 1 11 1 11 1 11 1

5 1 1 2 2 3 3 4 4 5 5

0 1 1 1 1 1

N NN N NN N NN N NN

N N N N N

N N NN N NN N NN N NN N NN

H H H H H H H H

I I I I I I I I I I I

I I I I I I I I I I I

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

50

11

1

21

2

31

3

41

4

51

5

0

N

N

N

N

N

A

A

A

A

A

A

A

A

A

A

A

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
  



 (47) 

 

5. Homogeneous electro-elastic plate of polygonal cross-sections        
The result for homogeneous transversely isotropic electro-elastic plate of polygonal cross-

sections can be obtained by omitting the magnetic conductions iB =0 (i= r,  ,z) in the 

corresponding relations and expressions. Thus the displacement potential for this problem is 

obtained by setting piezomagnetic material coefficients 15 31 33 0q q q   , magnetic material 

coefficients 11 33 0m m   and the magnetic permeability coefficients 11 33 0   . Therefore 

the Eqs. (13a)- (13d) are reduced to 

     2 2 2 2 2
11 13 31 152 1 0nnnL L Lc t c t W e e t E         

     2 2 2 2 2 2
33 13 152 2 21 0nn nL Lc t W c e t E           (48) 

     2 2 2 2 2
15 31 15 33 112 2 2 0nn nL Le t W e e t E            

and 
2 2

2

2
66

0L
n

t

c


  
   
 

. (49)  

Solving the Eq. (48), we obtain a trivial solution. To obtain the non-trivial solutions, put 

the determinant of the coefficient of the matrix is equal to zero. Thus we get  

     

     

     

 

2 2 2 2 2
11 13 31 152

2 2 2 2 2 2
13 33 152 2 2

2 2 2 2 2
31 15 15 33 112 2 2

1

1 , , 0

L L L

nnnL L

L L

c t c t e e t

c c t e t W E

e e e t t



 

    

       

      

 (50) 

Simplifying the Eq. (50), we get a six order partial differential equation, that is 

 6 4 2

2 2 2 0nP Q R S        , (51) 

where 

 2

11 11 15P c e    

      
2

2 2
11 11 15 11 15 11 157 5 6 1 2 2 3 32 2LQ c g g g e g e t g g g e g            
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      2 2 2
11 11 155 7 6 1 7 5 6 2 2 7 3 6 3 52 2LR c g g g g g g g e t g g g g g g g         

 2

1 5 7 6S g g g g  . (52) 

Solving the Eq. (51), the solution for the symmetric mode is obtained as 

     
3

1

sin sin i t
inn n i

i

r A J r m n e    


  

     
3

1

sin sin i t
inn i n i

i

W r d A J r m n e   


  (53) 

     
3

1

sin sin i t
n ini n i

i

E r e A J r m n e   


 . 

The constants id  and ie  defined in the Eq. (53) are given by 

  
    

2 2 2 2
11 151 6 3 6

2 2 2
152 6 3 5

i i i L

i

L i i

c g e g g g t
d

t g e g g g

  

 

  


  
 

  

    

2 2 2 2 2
11 1 5 2

2 2 2
152 6 3 5

i i i L

i

L i i

c g g g t
e

t g e g g g

  

 

  


  
. (54) 

Similarly solving the Eq. (49), we obtain the solution for the symmetric mode as 

     4 4 sin sin i t

n n nr A J r m n e     . (55) 

The boundary condition for a electro-elastic plate of polygonal cross-section is obtained 

as 

(i) Stress free(unclamped edge) 

        0xx xy xz ri i ii
D      ; (56) 

(ii) Rigidly fixed (clamped edge) 

      0r i i i
u u E   , (57) 

where xx  is the normal stress, xy , xz  are the shearing stresses, rD  is the electric potential 

as discussed in the section A. By using the same procedure as discussed in the section A, the 

boundary conditions (56) and (57) are transferred as 

         

    

2 2 1 2 2

11 12 , 11 12 ,

1

66 , , 13 , 31 ,

cos sin sin cos

sin 2 0

xx i i r i i

r i z zz

c c u r c c u v

c r v u v c w e E





        

 





         

      
  

          1 1

66 , , , ,sin 2 cos 2 0xy r i r ic u r v u r u v v                 

            1

44 , , , , 15 , ,

1
cos sin cos sin 0xz z r i z i r i ic u w v r w e E E

r
           

            
 

0xD   (58) 

Substituting the Eq.v(53) in the Eq. (56) the boundary conditions are transformed for 

stress free polygonal cross-sectional plate is obtained as 

     sin sin i t
xxxx i i

S S m n e    
 

 

     sin sin i t
xyxy i i

S S m n e    
 

 

     sin sin i t
xzxz i i

S S m n e    
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     sin sin i t
xx i i

E E m n e    
 

, (59) 

where    1 2 3 1 2 3 4
10 20 30 1 2 3 40 0 0

1

0.5 n n n nxx n n n n

n

S A p A p A p A p A p A p A p




         

   1 2 3 1 2 3 4
10 20 30 1 2 3 40 0 0

1

0.5 n n n nxy n n n n

n

S A q A q A q A q A q A q A q




         

   1 2 3 1 2 3 4
10 20 30 1 2 3 40 0 0

1

0.5 n n n nxz n n n n

n

S A r A r A r A r A r A r A r




         

   1 2 3 1 2 3 4
10 20 30 1 2 3 40 0 0

1

0.5 n n n nx n n n n

n

E A s A s A s A s A s A s A s




         (60) 

 4 1 2 3 4

40 1 2 3 40

1

0.5 n n n nxx n n n n

n

S p A A p A p A p A p




       

 4 1 2 3 4

40 1 2 3 40

1

0.5 n n n nxy n n n n

n

S q A A q A q A q A q




       

 4 1 2 3 4

40 1 2 3 40

1

0.5x n n n nn n n n

n

E s A A s A s A s A s




       (61) 

The boundary conditions along the irregular shape cannot be satisfied directly. To 

satisfy the boundary conditions, the Fourier expansion collocation method is applied along the 

boundary. Performing the Fourier series expansion to the transformed expression in Eq. (56) 

along the boundary, the boundary conditions are expanded in the form of double Fourier 

series for symmetric and antisymmetric modes of vibrations. For the symmetric mode, the 

equation which satisfies the boundary condition, is obtained in matrix form as follows 

1 2 3 1 1 2 2 3 3 4 4

00 00 00 01 0 01 0 01 0 01 0

1 2 3 1 1 2 2 3 3 4 4

0 0 0 1 1 1 1

1 2 3 1 1 2 2 3 3 4 4

00 00 00 01 0 01 0 01 0 01 0

1 2 3 1 1 2 2 3

0 0 0 1 1 1

N N N N

N N N N NN N NN N NN N NN

N N N N

N N N N NN N NN N

P P P P P P P P P P P

P P P P P P P P P P P

Q Q Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q 3 4 4

1

1 2 3 1 1 2 2 3 3 4 4

00 00 00 01 0 01 0 01 0 01 0

1 2 3 1 1 2 2 3 3 4 4

0 0 0 1 1 1 1

1 2 3 1 1 2 2 3 3 4 4

00 00 00 01 0 01 0 01 0 01 0

1 2 3 1

0 0 0 1

NN N NN

N N N N

N N N N NN N NN N NN N NN

N N N N

N N N N NN

Q Q Q

R R R R R R R R R R R

R R R R R R R R R R R

S S S S S S S S S S S

S S S S S

10

20

30

11

1

21

2

31

3

1 2 2 3 3 4 4

1 1 1 41

4

0

N

N

N

N NN N NN N NN

N

A

A

A

A

A

A

A

A

A

S S S S S S A

A

 
 
 
 

   
   
   
   
   
   
   
   
       
   
   
   
   
   
   
   
     

 
 
 
  

 (62) 

where 

 
11

2
, cos

i

i

I
j jn

mn n i

i

P p R m d





  

 

 
  
 


 

 
11

2
, sin

i

i

I
j jn

mn n i

i

Q q R m d





  

 

 
  
 


 

96 R. Selvamani, G. Infant Sujitha



 
11

2
, cos

i

i

I
j jn

mn n i

i

R r R m d





  

 

 
  
 

  

 
11

2
, cos

i

i

I
j jn

mn n i

i

S s R m d





  

 

 
  
 

  (63) 

Similarly, for the antisymmetric mode, we get 

4 1 1 2 2 3 3 4 4

10 11 1 11 1 11 1 11 1

4 1 1 2 2 3 3 4 4

0 1 1 1 1

4 1 1 2 2 3 3 4 4

10 11 1 11 1 11 1 11 1

4 1 1 2 2 3 3 4 4

0 1 1 1 1

4 1 1 2 2

10 11 1 11 1

N N N N

N N NN N NN N NN N NN

N N N N

N N NN N NN N NN N NN

N N

P P P P P P P P P

P P P P P P P P P

Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q Q

R R R R R
3 3 4 4

11 1 11 1

4 1 1 2 2 3 3 4 4

0 1 1 1 1

4 1 1 2 2 3 3 4 4

10 11 1 11 1 11 1 11 1

4 1 1 2 2 3 3 4 4

0 1 1 1 1

N N

N N NN N NN N NN N NN

N N N N

N N NN N NN N NN N NN

R R R R

R R R R R R R R R

S S S S S S S S S

S S S S S S S S S

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

40

11

1

21

21

31

3

41

4

0

N

N

N

A

A

A

A

A

A

A

A

A

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
   
   

 (64) 

where  
11

2
, sin

i

i

I
j j

n
mn in

i

P p R m d





  

 

 
  
 

  

 
11

2
, cos

i

i

I
j j

n
imn n

i

Q q R m d





  

 

 
  
 

  

 
11

2
, sin

i

i

I
j j

n
mn n i

i

R r R m d





  

 

 
  
 

  

 
11

2
, sin

i

i

I
j j

n
mn n i

i

S s R m d





  

 

 
  
 

 , (65) 

where j=1,2,3 and 4, I is the number of segments, iR  is the coordinate r at the boundary and N 

is the terms in the Fourier series. The frequency equation for determining the frequencies may 

be obtained by equating the coefficient of the system of Eq. (62) or Eq. (64) to zero. 

 

6. Numerical results and discussion 

The frequency equations obtained in symmetric and antisymmetric cases given in Eq. (46) 

and (47) are analyzed numerically for magneto electro elastic plate of polygonal (triangular, 

square, pentagonal and hexagonal) cross-sections. The material properties of the electro-

magnetic material based on graphical results of Aboudi [33] are 
9 2

11 218 10c N m  , 
9 2

12 120 10c N m  , 
9 2

13 120 10c N m  , 
9 2

33 215 10c N m  , 
9 2

44 50 10c N m  ,
9 2

66 49 10c N m  , 15 0e  ,
2

31 2.5e C m  ,
2

33 7.5e C m , 
2

15 200q C m , 
2

31 265q C m ,
2

33 345q C m , 
9

11 0.4 10 C Vm   , 
9

33 5.8 10 C Vm    ,
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6 2 2

11 200 10 Ns C    , 6 2 2

33 95 10 Ns C   ,
9

11 0.0074 10m Ns VC  ,
9

33 2.82 10m Ns VC  . 

The geometric relations for the polygonal cross-sections given by Nagaya [32] as

 
1

cosi iR b  


    , (66) 

where b is the apothem. The relation given in Eq. (66) is used directly for the numerical 

calculation. The dimensionless wave numbers, which are complex in nature, are computed by 

fixing   for 0 1.0  using secant method (applicable for complex roots). The basic 

independent modes like longitudinal and flexural modes of vibration are analyzed and the 

corresponding non-dimensional wave numbers are computed. The polygonal cross-sectional 

bar in the range 0   and    is divided into many segments for convergence of wave 

number in such a way that the distance between any two segments is negligible. The 

computation of Fourier coefficients given in Eq. (44) is carried out using the five point 

Gaussian quadrature.  

 

 
Fig. 1. Geometry of ring shaped polygonal plates 
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Longitudinal modes of polygonal plates. In case of longitudinal vibration of square 

and hexagonal cross-sectional plates, the displacements are symmetrical about both major and 

minor axes, since both the cross-sections are symmetric about both the axes. Therefore the 

frequency equation is obtained by choosing both terms of n and m as 0, 2, 4, 6… in Eq. (46). 

During flexural motion, the displacements are anti-symmetrical about the major axis and 

symmetrical about the minor axis. Hence the frequency equation is obtained by  

choosing n, m=1, 3, 5 in Eq. (46).   

Flexural modes of polygonal plates. In flexural mode of square and hexagonal cross-

section, the vibration and displacements are antisymmetrical about the major axis and 

symmetrical about the minor axis The vibrational displacements are symmetrical about the x 

axis for the longitudinal mode and anti-symmetrical about the y axis for the flexural mode in 

the triangular and pentagonal cross-sectional plates, since the cross-section is symmetric 

about only one axis. Therefore n and m are chosen as 0, 1, 2, 3… in Eq. (47) for the 

longitudinal mode and n, m=1, 2, 3 … in Eq. (47) for the flexural mode.  

Dispersion analysis. The variation of circumferential stress   with the non-

homogeneous parameter m is discussed for different cross section of the magneto electro 

elastic plate in Fig. 2. It is clear that, the circumferential stress propagation behavior which is 

caused by the non-homogeneous parameter m is decreasing in all the cross section of the 

plates. Fig. 3 shows the variation of the radial stress 
rr  with respect to the non-homogeneous 

parameter m of the magneto electro elastic plate for various cross section of the magneto 

electro elastic plate. From the curves in Fig. 3, it is clear that the radial stresses are higher in 

lower non-homogeneous parameter m and decreases slowly in the remaining range with small 

oscillation in the hexagonal plate. The parameter m is effective in the stress distribution of the 

entire cross sectional plate. 

Figure 4 depicts the variation of the radial strain rre  with respect to the non-

homogeneous parameter m of the magneto electro elastic polygonal cross sectional plate. In 

Fig. 4, the radial strain obtain the positive values in the range 0 0.075m   for all cross 

sectional plates, then the radial strain distribution goes on increasing and vanishes on the 

domain 0.25m .The trend is same in circumferential strain e  in Fig. 5 for all type of cross 

sectional plates, except there is a small deviation in the starting range of the non-

homogeneous parameter m.  

 

 
Fig. 2. Variation of circumferential stress versus parameter m for different cross sections of 

the plate 
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Fig. 3. Variation of radial stress versus parameter m for different cross sections of the plate 

 

 
Fig. 4. Variation of radial strain versus parameter m for different cross sections of the plate 

 

 
Fig. 5. Variation of circumferential strain versus parameter m for different cross sections of 

the plate 
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Fig. 6. Variation of induced electric field versus parameter m for different cross sections of 

the plate 

 

 
Fig. 7. Variation of induced magnetic field versus parameter m for different cross sections of 

the plate 

 

A graph is drawn between the variations of induced electric field versus the non-

homogeneous parameter m of magneto electro elastic plate of polygonal cross sections in 

Fig.6. From the Fig.6, it is clear that the displacement of induced electrical energy is getting 

negative values in the range 0 0.1m  , but for the higher values of m it becomes constant 

for all the cross sections of the plate. The transfer of electrical energy is higher in the lower 

values of the parameter m as compared to the higher values and this cross over point 

represents the transfer of electrical energy between modes of vibration of polygonal plates. 

The variation of the induced magnetic field versus the non-homogeneous parameter m of 

magneto electro elastic polygonal plates is analyzed in Fig. 7. From these curves it is clear 

that in the entire cross sectional plates, the induced magnetic field takes negative values in the 

range 0.01 0.15m   but for 0.15m  slowly it vanishes.  
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7. Conclusion 

The effect of magnetic field and non-homogeneity in a piezoelectric plate of polygonal cross 

sections is studied using the linear theory of elasticity. The wave equation of motion based on 

two-dimensional theory of elasticity is applied under the plane strain assumption of plate of 

polygonal shape, composed of homogeneous transversely isotropic material. The frequency 

equations are obtained by satisfying the irregular boundary conditions of the polygonal plate 

using Fourier expansion collocation method. The analytical results obtained in the physical 

domain have been computed numerically for a magneto electro elastic material. The 

numerically analyzed results for the stress, strain, displacements and induced electric and 

magnetic fields have been presented graphically. The polygonal plates, as structural elements, 

are widely used in construction of oil pipes, submarine and flight structures to ensure the 

strength and reliability, acted upon by nonuniform loads. 
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