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Abstract. The effect of non-homogeneity in a magneto electro elastic plate of polygonal cross
sections is studied using the linear theory of elasticity. The wave equation of motion based on
two-dimensional theory of elasticity is applied under the plane strain assumption of plate of
polygonal shape, composed of non-homogeneous transversely isotropic material. The
frequency equations are obtained by satisfying the irregular boundary conditions of the
polygonal plate using Fourier expansion collocation method. The analytical results obtained
in the physical domain have been computed numerically for Triangle, Square, Pentagon and
Hexagonal plates. The results for stress, strain, displacements, induced electric and magnetic
fields have been presented graphically.

Keywords: magneto-electro elastic cylinder, solid with polygonal cross sections, Fourier
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I. Introduction

The three dimensional vibration in plates of polygonal cross section made of smart and
intelligent materials has considerable importance for a long time. The electro-magneto-elastic
materials exhibit a desirable coupling effect between electric and magnetic fields, which are
useful in smart structure applications. These materials have the capacity to react
corresponding response due to the external stimulation and impulse load. The advantages of
non homogeneous material still remain the structural integrity than the conventional
composite materials under severe conditions. The composite consisting of piezoelectric and
piezomagnetic have found increasing application in engineering structures, particularly in
smart/intelligent structure system. The magneto-electro-elastic materials are used as magnetic
field probes, electric packing, acoustic, hydrophones, medical, ultrasonic image processing,
sensors and actuators with the responsibility of magnetic-electro-mechanical energy
conversion.

Recently, many researchers have devoted their attention to the mechanics problems of
transversely isotropic material connected with magneto-electro-elasticity. Ahmadi and
Eskandari [1] investigated the vibration analysis of a rigid circular disk embedded in a
transversely isotropic solid. Green’s functions of a surface-stiffened transversely isotropic
half-space were developed by Eskandari and Ahmadi [2]. Ahmadi and Eskandari [3] studied
the axisymmetric circular indentation of a half-space reinforced by a buried elastic thin film.
Eskandari et al. [4] analyzed the time-harmonic response of a surface stiffened transversely
isotropic half-space. Weaver et al. studied the transient elastic waves in a transversely
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isotropic Plate, Haojiang et al. [5] investigated the free axisymmetric vibration of transversely
isotropic piezoelectric circular plates

Pan [6] and Pan and Heyliger [7] analyzed the three-dimensional behavior of
magnetoelectroelastic laminates under simple support boundary conditions. An exact solution
for magnetoelectroelastic laminates in cylindrical bending has also been obtained by Pan and
Heyliger [8]. Pan and Han [9] studied the exact solution for functionally graded and layered
magneto-electro-elastic plates. Feng and Pan [10] discussed the dynamic fracture behavior of
an internal interfacial crack between two dissimilar magneto-electro-elastic plates.
Buchanan [11] developed the free vibration of an infinite magneto-electro-elastic cylinder.
Dai and Wang [12, 13] have studied thermo-electro-elastic transient responses in piezoelectric
hollow structures and hollow cylinder subjected to complex loadings. Annigeri et al. [14 — 15]
studied respectively, the free vibration of clamped-clamped magneto-electro-elastic
cylindrical shells, free vibration behavior of multiphase and layered magneto-electro-elastic
beam, free vibrations of simply supported layered and multiphase magneto-electro-elastic
cylindrical shells. Gao and Noda [16] presented the thermal-induced interfacial cracking of
magnetoelectroelastic materials. Hon et al. [17] analyzed a point heat source on the surface of
a semi-infinite transversely isotropic electro-magneto-thermo-elastic material. The dynamic
response of a heat conducting solid bar of polygonal cross section subjected to moving heat
source is discussed by Selvamani [18] using the Fourier expansion collocation method
(FECM).The wave propagation in a magneto-thermo elastic wave in a transversely isotropic
cylindrical panel using the wave propagation approach were investigated by Ponnusamy and
Selvamani [19]. Recently, Selvamani and Ponnusamy [20] have studied the wave propagation
in a generalized piezothermoelastic rotating bar of circular cross-section using three-
dimensional linear theory of elasticity.

Bin et al. [21] analyzed the wave propagation in non-homogeneous magneto-electro-
elastic plates. Chen et al. [22] worked on free vibration of non-homogeneous transversely
isotropic magneto-electro-elastic plate. Chakraverty et al. [23] studied the flexural vibrations
of non-homogeneous elliptic plates. Tanigawa [24] presented some basic thermoelastic
problems for nonhomogeneous structural —materials. Li [25] discussed the
magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in
composite materials. Kong et al. [26] presented the thermo-magneto-dynamic stresses and
perturbation of magnetic field vector in a non-homogeneous hollow cylinder. Ding et al. [27]
and Hou et al. [28] presented an analytical solution to solve the transient responses of a
special non-homogeneous pyroelectric hollow cylinder for piezothermoelastic axisymmetric
plane strain dynamic problems. lbrahim [29] provided a finite element method to solve the
thermal shock problem in a non-homogeneous isotropic hollow cylinder with two relaxation
times.

In this paper, the effect of magnetic field and non-homogeneity in a piezoelectric plate
of polygonal cross sections is studied using the linear theory of elasticity. The frequency
equations are obtained by satisfying the irregular boundary conditions of the polygonal plate
using Fourier expansion collocation method. The analytical results obtained in the physical
domain have been computed and the numerically analyzed results for the stress, strain,
displacements and induced electric and magnetic fields have been presented graphically.

2. Formulation of the Problem

We consider a homogeneous transversely isotropic magneto-electro-elastic plate of polygonal
cross-sections as shown in Fig. 1. The system displacements and stresses are defined by the
cylindrical coordinates r, @ and z. The governing equations of motion of the electric and
magnetic conduction in the absence of body force are taken from Selvamani and
Ponnusamy [22]
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The equation of electric conduction is given by:
D,,+r'D,+r'D,, =0. (2)
The equation of Magnetic conduction is given by:
B, +r'B +r'B,, =0, (3)
where:
O =Cp€ T Cp€h,
Ogp = Co€y +C1€gy, 4)
Oy = 2Cq5€,4-
D, =2e.e, +&,E, +mH,, 5)
D, =2e.e, +¢,E, +m H,.
And:
B, =20q,e, +myE, +u,H,, ©)

B, = 20,58, + My E, +1,H,,
where o,,,0,,,0,, are the stress components, c,,,C,, and c,, are elastic constants, &, are the
dielectric constants, g4, are the magnetic permeability coefficients, e,;,e,,e. are the
piezoelectric material coefficients, m,, are the magnetoelectric material coefficients, p is the
density of the material, D,,D, are the electric displacements, B,,B, are the magnetic
displacements components. The strain e; are related to the displacements corresponding to
the cylindrical coordinates are given by

e —M o :l(ﬂﬂ)
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erH - 2(_ )
rog or r
where u and v are the mechanical displacements along the radial and circumferential
directions.
The Electric field vector E; is related to the electric potential E as:

oE 10E
E =——,E,=—=—. 8
"o’ roe ®)
Similarly, the magnetic field vector H, is related to the magnetic potential H as
oH 10H
H=—"— H,=—="—. 9
" oY roe ®)

Substituting Egs. (7) — (9) in Egs. (1) — (6), we obtain the following stress displacement
relations:
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The elastic constants C;,C,Cs , magnetic permeability coefficient 4z,
electromagnetic material coefficient m, , density p are characterized in terms of non-
homogeneity of the material as follows:

Cy=(L+V)r*™, c, =Lr™ c, _%rzm,

ty =V'r 2m 11_m11r2m’ (11)

en=eut", p=pr,
where L,V,V'and p,,m',, &', are constants of homogeneous matter and m is the rational

number. Substituting Eqg. (11) in Eqg. (10) we obtain the stress displacement equations for
nonhomogeneous medium:
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Substituting the Eg. (12) in the Egs. (1) - (3), we obtain the set of displacement
equations
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3. Solution of the problem

The Egs. (13) is a coupled partial differential equation with three displacements and magnetic
and electric conduction components. To uncouple the Egs. (13), we seek the solution in the
foIIowing form:

ZS (r l//nH nr)
:ZE (_r ¢n,0_l/ln,r)’
re) > eW, ., (14)
_Z n n,z1
H(r,e):ZgnHm,

where ¢, (r,6), v, (r,6), W,(r,0), E,(r,6) and H,(r,6) are the displacement potentials.
Substituting the Eq. (14) in (13), we get

L+V op, L %o,
L+V)VZp +2m n_— - L=0, 15a
( ) l(Dn ( r 6r rz nj 0 8,[2 ( )
2 E, H,
£, V2E_+m V2H_ rm( %, mﬂa j 0, (15b)
. . 2m( . oE . oH
m.,V2E +V VZH +=— n o4 n1=0, 15¢
117 1=n 1 n r ( 11 ar arj ( )
and
V., 10y, v j
—Viy +Vm| =270 -Q, 16
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We consider the free vibration of non homogeneous polygonal cross-sectional plate and
we seek the displacement function, electric and magnetic displacement function as:

¢,(r,0,t)=r"¢, (r)cosnge,

E,(r,6,t)=r"E,(r)cosnge'*, 17)
H,(r,0,t)=r"H, (r)cosnge"*,
and

w,(r,0,t)=r"y, (r)cosnge™. (18)
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Using the Egs. (17) and (18) in the Egs. (15) and (16), we get
pya’ ((m2 + n2)2mL)

. 1.
- - =0 1

o, (N+20. () 5y v a(n)|=0, (19)
which is reduced as

. 1.
0. (1)+— 0. (r)(a’r* =), (r) =0, 20)
where o’ _ e B = ((m2 +n2)2mL).

L+V L+V
Equation (20) is Bessel equation with order g and its solution is given by:

2, (r)=(And,; (ar)+A Y, (ar))cosng =0, (21)

where A, and A are arbitrary constants and J,(ar) and Y, (ar) are the Bessel functions

of first and second kind of order B respectively.
Substituting Eq. (18) in to Eq. (16), we get

2,2
1//:(r)+%z//'n(r)[z’o"Twa—r—lz@mz+4n+n2)jz//n(r):0, (22)
which is reduced to
wﬁ“)+%wxrxk%2—5ﬂw50):o. (23)
Equation (23) is Bessel equation with order ¢ and its solution is given by
vo (1) =(And; (ar)+A Y, (ar))sinng =0, (24)

where A,, and A are arbitrary constants and J, (ar) and Y, (ar) are the Bessel functions

of first and second kind of order & respectively.
Substituting Eq. (17) in to Egs. (15), we get

. 0°E 511 OE. &, O°E m1 oH, &, 0°H,
n 2 1 “11 1 2 1 n 11 0 25
[‘gﬂar2 r(m )8r aezj (m“ r(m“k)arJrr2 06 (25)
1 (m2+n2) 1 (m2+n2)
M| B (1) + 2, (1) = E, (1) [+V| Hi(r)+ 2 H, ()= H, (1) =0, (@8)
which will reduced in to the convenient form:
1 2 1 2
gn(E (r)+ (1) %En(r)j+mn[H (r)+ - H, (1)~ %Hn(r)jzo, 27)
) . 1 . p2 ) i 1 . p2
m,, En(r)+FEn(r)—r—2En(r) +V Hn(r)+FHn(r)—r—2Hn(r) =0, (28)
where
p>=m’+n’.
Solving Eq. (27) and Eq. (28), we can get
2
£, (1) +E,(1)- £, (r) -0, (29)
. 1 . p’
H,(r)+=H,(r)-=H,(r)=0. (30)

r r



90 R. Selvamani, G. Infant Sujitha

The general solution of Egs. (29) and (30) are as follows:
En(r,H,t)=(A2nr"+A;nr’p)cosn¢9eiwt, (31)
Hn(r,a,t):(ASHrp+A§nr‘p)cosn6ta‘w‘, (32)
where A,., A, A, A;, are the arbitrary constants.

The general solution of the non-homogeneous solid plate of polygonal cross sections is

as:
¢,(r.6,t)=A,J;(ar)cosnd, (33a)
E.(r.6,t)=A,r’cosng, (33b)
H,(r,0,t)=A,r"cosnd, (33c)
w, (r,0,t)=A,J,(kr)sinne. (33d)

4. Boundary condition and frequency equations

In this problem, the vibration of polygonal cross-sectional plate is considered. Since the
boundary is irregular in shape, it is difficult to satisfy the boundary conditions along the
surface of the plate directly. Hence, the Fourier expansion collocation method is applied to
satisfy the boundary conditions. For the plate, the normal stress o, and shearing stresses

0,0, , the electric field D, and the magnetic field B, is equal to zero for stress free

Xy~ xz 1
boundary, and for rigidly fixed boundary, the displacements along the radial direction u,,
along the circumferential direction u,, and the electric field E, and the magnetic field H is

equal to zero. Thus the following types of boundary conditions are assumed for the plate of
polygonal cross-section is
(i) Stress free(unclamped edge), which leads to

(Gxx)i:(O-X‘/)i:(GXZ)i:(DI’)i:(BI’)iZO; (34)
(i) Rigidly fixed(clamped edge), implies that
(), =(u), =(E), =(H),=o0. (3)

where o,, is the normal stress, o,,,o,, are the shearing stresses, D, is the electric field, B,

A
is the magnetic field and the bracket ( )i is the value at the boundary T';. Similarly u,,u, are
displacements along the radial and circumferential direction, E and H are respectively the
electric and magnetic displacements in the i"™ segment of the polygonal cross-sectional plate.
Since the vibration displacements are expressed in terms of the coordinates r and @, it is
convenient to treat the boundary conditions when the derivatives in the equations of the
stresses are transformed in terms of the coordinates r and & instead of the coordinates x; and
y.. The relations between the displacements are as follows for i"" segment of straight-line
boundaries
u,=u, cos@-y,)-u,sin(@-y,),
u, =u,cos(@—y)-u,sin(@-y)
Since the angle y, between the reference axis and normal of the i" boundary has a
constant value in a segment I';, we obtain:

(36)
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aa_):i = COS(Q— Vi )' S_)f - _(%)Sin(g_% )1
(37)

%:sin(ﬁ—%), %Z(%)COS(Q_%)'

| Using the Egs. I(36) and (37), the normal and shearing stresses are transformed as:
0, =€y €0S° (0—7,)+Cypsin* (0 =y, )u, +17(cy5in* (0— 7, ) +¢y, c08* (0 -7, ) )(u+V,)
+066(r‘1(v—u'9)—vyr)sin 2(0—7,)+CW, +€,E ,, +0yH , =0
Oy = Cos ((u,r -r(v, +u))sin 2(0—7,)+( *(u, —v)+v’r)c032(6?—;/i)) =0
o, = 044((u1Z +w, )cos(0-y)—(v, +rw,)sin(0-y, ))+e15(Er cos(0-7)-r"E,sin(0-7,))
+ 05 (H, cos(0—7)-rH ,sin(6-))=0

oE oH ,0E ,0H
Dy :_511 _mll =0,B, :_mll _Ml o =0. (38)
Imposmg non- homogenelty to the Eq. (38), we can get the following mechanical,

magnetic and electric stress equations :
=(L+V)cos® (6 -y )+Lsin® (0—y )u, +r*((L+V)sin® (6 -y )+Lcos’ (0—y))(u+v,)
+Cyq (r’l (v—u,)-v, )sin 2(0-7,)+C W, +€,E,, +0yH , =0

Oy =\é((u]r -r(v, +u))sin 2(0—;4)+(r’1(uﬂ —v)+v},)cosz(9—yi )) =0

oE oH

D, =&, —my 2 =0
x =Ty M or

oE oH
B, :_mll _,U:Ll o =0. (39)

Substltutmg the Egs. (33a) - (33d) in the Eq. (34), the boundary conditions are
transformed for stress free non-homogeneous polygonal cross-sectional plate as follows:

"(sxx )i +(5x), Je
)+(54) Je
(B
)+ (H

) Je
where

Sy = O-S(A_Loeé + Azoeg + Aweg)+

s

(A + Al + Ages + A en)

>
Il
N

i[Ms

:O-S(A&Ofol+p‘zof02+Asof )+ (Ain fn +A2nfn +A30f3+A4nfn )

=05(A0Gs + A0S+ AG3 )+ 2 (And +Anlr + Aoll + Ang;)

M8 ﬁMs

E :0S(AIOh:OL-’_AZOhO2 +A30h3)+ Ai hr11+A2nhr$ +A30h3+A4nhn)

>
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H = 0.5( Aglg + Awis + Ay )+ D (Al + Ayl + Agis + Ay )
n=1
= —5— = -1 -2 -3 -4
S =0.5e0 Aso +Z(Ainen + AZnen + A.SOEn + AAne”)
n=1
= —5— = —1 —2 —3 —4
Sy =0.5f0A50+Z(Amfn+A2nfn+A50fn+A4nfn)
n=1

— —5— X —1 —2 —3 —4
sz ZO.SQOASO +Z(A1ngn + A2n gn +Aﬁogn +A4ngn)

n=1

n

E:O.SﬁiﬂsHZ(Amﬁln+A2nﬁi+Agoﬁi+A4nﬁﬁ)

=1

H = 0.5i5 Aso +Z(Anﬁ CA Tt Agis Adni_ﬁ).
n=1

The coefficients e ~ i_n are given in the Appendix A.

(40)

(41)

Performing the Fourier series expansion to Eq. (35) along the boundary, the boundary
conditions along the surface are expanded in the form of double Fourier series. In the

symmetric mode, the boundary conditions are obtained as:

zgm Er:ll‘IOALO + Enz‘loAZO + EI’?]OA3O + E:;OAAO +Z(Er]1-1nAin + Enz'mA'Zn + Er?mA:sn + Erl:lnAAn + EI?‘IHASH )j| = 0
m=0 n=1

ng FrioAio + anoAzo + Fn?oAao + Frr?OAAO + Z(FnlmAln + annAZn + Fn?nAjn + Fr:nAAn + annASn ):| = 0
m=0 L n=1
> En| GhoAo + Gl + oA +GrnoAp + 2 Gan A +Gon Ay +Giny Ay, + G Ay + G A, )} =0
m=0 L n=1

0

ng H;OALO + H;OAZO + Hr::lOA:io + Hr::OAAO +Z(H§1nAn + anmAZn + Hr?mA3n + HrinAAn + HrinAEn):|:0
m=0 n=1

S 1 2 3 4 S 1 2 3 4 5
ng|:|m0A10 + ImOAZO + ImOA3O + ImOAzlo +Z(ImnA1n + ImnAZn + ImnAsn + ImnAzln + ImnAsn):|:0'
n=1

Similarly, for the antisymmetric mode, the boundary conditions are expressed as:
2[5 — (=1 — -2 — =3 — —4 — =5 —
z Emo Aso +Z(Emn Aun + Emn A2n + Emn Asn + Emn Aan + Emn Asn ):| =0
m=0]_ n=1
2 [—5 — (=1 — -2 — —3 — —4 — —5 —
Z F mo Aso + (anAln+anA2n+anA’3n+anA4n+anA5n):|=0
L n=1

z G;OZ\SO + (6lmn Kln +6in ZZH + G?nn Tkn +6$n ZAn + Grsnn KSn ):| =0

n=1

= —1 — —2 — —3 — —4 — —5 —
Z HmOASO+Z(HmnA1n+HmnA2n+HmnA’3n+HmnA4n+HmnA5n):|=0

m=0]_ n=1

| -5 — (1 — -2 — -3 — —4 — -5 —

Z |m0A50+Z(|mnA1n+|mnA2n+|mnA3n+|mnA4n+|mnA5n):|=Ol
m=0|_ n=1

wnere

|
> | el(R,0)cosmode

6
> [ (R, 0)sinmode

(42)

(43)
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G/, =(2‘9 jZI)T 0. (

|—19Il

R, 49 cosmedo

sm mede ,
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(44)

(45)

wherej 1,2,34, I is the number of segments, R, is the coordinate r at the boundary and N is

the number of truncation of the Fourier series. The frequency equations are obtained by
truncating the series to N+1 terms, and equating the determinant of the coefficients of the

amplitude A, =0 and Ain =0 (i=1,2,3,4), for symmetric and anti symmetric modes of
vibrations. When the plate is symmetric about more than one axis, the boundary conditions in

the case of symmetric mode can be written in the form of matrix as given below:

(=
Eoo
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H 00

1
HNO

Il

Il

2
EOO

2
ENO

2
FOO

2
FN 0

2
GOO

2
GNO
2
HOO
2
HNO
IZ

IZ

Similarly, the matrix for the antisymmetric mode is obtained as:
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2
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2
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Eo |[

| Ao
Edw || Ao
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(e

A |
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-5 —1 —1 —2 —2 —3 —3 —a4 —4 —s5 —5
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Ao
I —1 —2 —2 =3 e I— —4 =5 —s :
Fno Fanao oo+ Fw Faeo oo Faw Fnao oo« Faw Faro - Faw Fanr oo Faw :
—5 =1 —1 —2 —2 —3 —3 —4 —4 —s5 —s || Ay
Gow Gu -+ Gw Gu -+ Gw Gu -+ Gw Gu -+ Gw Gu - G
: : : : : : : : : : : Ay =0
—5  —1 —1 —2 —2 =3 —3 =4 —4 =5 —5 :
Gnvo Gnmi -+ Gw Gn -+ Gw Gni - Gww Gani oo+ Gww Gair o+ Gw A,
N
—5 — —1 —2 —2 —3 —3 —4 —4 —5 —s
Ho Hwy - Hw Hu -+ Hw Hun -+ Hw Hun -+ Hww Hua -+ Hw || A
—5  —1 —1 =2 —2 —3 —3 —a —4 —s 75 |l A,
Hxo Hwnt -+ Hw Hnao -+ Hw Hae oo+ Hw Hwae - Hw Hae o+ Hw N
-5 -1 -1 —2 -2 -3 -3 —4 —4 -5 -5 A,
l1o lu - I | ETRRTE F1N lu - I la - I {FERRTE F1Y . (47)
-5 —1 -1 -2 -2 -3 -3 -4 —4 -5 -5 [ A
L T T N VE FYERETTI VAN FYERRETEI FYIYER FERRNETCIN EYVE FYRRNETCR YR

5. Homogeneous electro-elastic plate of polygonal cross-sections
The result for homogeneous transversely isotropic electro-elastic plate of polygonal cross-

sections can be obtained by omitting the magnetic conductions B, =0 (i= r, #,z) in the

corresponding relations and expressions. Thus the displacement potential for this problem is
obtained by setting piezomagnetic material coefficients g, = d,; = ,; =0, magnetic material

coefficients m, =m,, =0 and the magnetic permeability coefficients s, = 1,; =0. Therefore
the Eqgs. (13a)- (13d) are reduced to
(&Nﬁ —t7+Q? )&n + (1+ ElB)tEWn + (é31 + élS)tiEn =0

(V240 —cat? )v_v 0+ (1+Cis ) V34, +(e5V5 ~ 17 )Ea =0 (48)
(615V§ —t? )V_Vn —(631 + éls)vgq_én + (2‘33'[5 — 2‘11V§ )En =0
0?12\ —
and (V§+ = L}//n =0. (49)
Ces

Solving the Eqg. (48), we obtain a trivial solution. To obtain the non-trivial solutions, put
the determinant of the coefficient of the matrix is equal to zero. Thus we get

(C_)nvg +O? —tE) (1-1—613)'[5 (é31 +é15)tf
(1+(_213)V§ (Vg +Q° —Esztf) (515V§ —tf) (gﬁn,Wn,En)= 0 (50)
—(ésl +615)V§ (é15V§ —tf) (Esatf —Ean)

Simplifying the Eq. (50), we get a six order partial differential equation, that is
(PV;+QV;+RV;+S)4, =0, (51)
where
P=—Cy (2‘11 + éfs)

Q=cu (g, —gsen +296éls)—91(5n +5fs)+ti (<9 (9,21 + 20,85 ) + 02
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R =Cur (0597 — 02 )+ 1 (9 — Gs&n + 205815 ) +17 (9, (9,95 +20,0:) + 9505 )
S=0,(0:9, - 9¢)- (52)
Solving the Eq. (51), the solution for the symmetric mode is obtained as
ZA.n (eyr)sin(mzg)sin nge'™

3

Zd,Am (er)sin(mzg’)sin nge™ (53)

Ze Aind, (er)sin(mzg’)sinnge .

The constants d; and e, defined in the Eq. (53) are given by
(cua? -9, ) (e + 6 ) - 9061t
g (g2 (essr + 95 )+ 05 (95 —af))
(Enaiz -~ gl)(g5 - ai2)+ gro’t?
(0, (e + 9, )+ 9 (e - 94))
Similarly solving the Eq. (49), we obtain the solution for the symmetric mode as

w, (r)=A,J, (a,r)sin(mz)sinnge'™. (55)
The boundary condition for a electro-elastic plate of polygonal cross-section is obtained

(54)

as
(1) Stress free(unclamped edge)
(00),=(), =(.), =(D,), =0; (56)
(i)  Rigidly fixed (clamped edge)
(ur)i =(u9)i =(E)i =0, (57)

where o, is the normal stress, o,,, o,, are the shearing stresses, D, is the electric potential

as discussed in the section A. By using the same procedure as discussed in the section A, the
boundary conditions (56) and (57) are transferred as

o), =C,, €S (0 — ;) +Cp, Sin’ (60—, )u, + r’l(cllsin2 (0—7y,)+cy,cos? (8-, ))(u +V,)
+c66<r‘1 (v—uﬁ)—v,,)sin 2(0-y;)+cuwW, +e,E,, =0

ol =cﬁ6((u,r —r (v, +u))sin 2(6’—7i)+(r‘1(uﬂ —v)+v,r)0032(6?—;/i))= 0
ol =C, ((uyz+wyr)cos(¢9—;/i)—(vvz+r1w9)sin(9—yi))+e15(E'rcos(a—yi)—%Eﬂsin(H—yi)jz0

D, =0 (58)
Substituting the Eq.v(53) in the Eq. (56) the boundary conditions are transformed for
stress free polygonal cross-sectional plate is obtained as

_(SLX )i +(S_'xx )i—sin(mﬁg)sin noet

_(S>,<y )i +(S_,xy >i | sin (mﬂé’)sin ngeimt

_(S;(z )i + (gxz )i sin (mﬂ'é')sin neeiwt
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[( =) +(E'x)_ Jsin (mzg’)sinnge'*, (59)
where S/, =0.5( Awp} + Az pg + Ax p§)+i(A1n b+ Aan Pl + AP} + AP}

n=1

S5, = 0.5( Autly + Az + Axlf | + i(Amqﬁ + Al + AanG + A |

=1

>

NgE

S,, = 0.5(A1or01 + Azl + A30I’03)+ (Aln I+ Aonll? + Asnl’ + A4nl’n4)

n=1
E = O.S(AmSé + AzoS, + A3083)+Z(A1n5i + A2nS? + AsnS’ + A4n5:) (60)
n=1
— —4 (T — T —2 T —3 T —4
S’xx:0.5poA40+Z(A1n pn+A2n pn+A3n pn+A4n pn)
n=1
= —4— 2 (T =1 T —2 T =3 T —4
S’y = 0.50, Aswo +Z(A1nqn + Aznq, + Asnd, +A4nqn)
n=1
— -4 (T 1 T -2 T =3 T —4
E'x = 0530 A40 +Z(A1n Sn + A2n Sn + A3n Sn + A4n Sn) (61)
n=1

The boundary conditions along the irregular shape cannot be satisfied directly. To
satisfy the boundary conditions, the Fourier expansion collocation method is applied along the
boundary. Performing the Fourier series expansion to the transformed expression in Eq. (56)
along the boundary, the boundary conditions are expanded in the form of double Fourier
series for symmetric and antisymmetric modes of vibrations. For the symmetric mode, the
equation which satisfies the boundary condition, is obtained in matrix form as follows

Au |
A |
I Polo Po% Po% Poll PolN P021 POZN Poi P03N Poi P04N | AS’O\

: : : : : : : : : : : Al'l\
Prio PNZO PNao Pr\h PNlN PNZl PNZN Pr\131 PNaN Pl\;ll Pl\fN :
Q(l>o 020 030 Qél e QéN 021 e OZN 031 " (?N le " QSN AI'N\

L a2 o _— 2 s e o || A |
QNO QNO QNO QNl QNN QNl QNN QNl QNN QNl QNN . =0
R(l)o Rozo R030 Rél R;N Rozl Ro2 N R031 Rg N Rgl Rg N || —]

S T P P P P A
R;o Rr%lo Rr?lo R;l R]l\-lN Rril Rr%lN Rlil Rr?lN Rﬁl RIA\‘JN Ast
Sw  Sw Sw Su Sov S SHE Sov Sau Son ||

: Asn
_Sao Srio SI?IO 8;1 StN Sril Sr%lN an Sl:\;lN S:\lu SSN_ K;\
(62)
where

- 26 V(6

Pl = (_ﬂn )ZL 1 p, (R,,0)cosm@de
i=1 -

j:ﬁjl " 4! (R,.6)sinmede
" (7[ ngqn( ,0)sinm
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n

|
R} =(ﬁ)z.[: r) (R, 6)cosmode
T i—1 -1

2¢

SJ =( n
mn ju

—4 =
P Pu
—4 =1
Pno P
I —|
Qo Qu
—4 =1
Quo Qu
)
Rio Ru
—4 =1
Rno  Rni
—4 =1
S Su
—4 —1
| Sno Swe
=i
where Pmn

=%
R —(
5! :( :
mn 7[

2¢,
V4
2¢

—1
Pin

—1
P
—

Q.

—
Qu
—1

Rin

—1
Rnw
—1
Sin

—
SN

—2
P11

—2
Pn1

)ZI:I: s! (R.,0)cosmode
e

Similarly, for the antisymmetric mode, we get

—2
Pin

—2
P
—2

Qu

—2
Qu
—

Rin

—2
R
—2
Sin

—
SN

|
j J.g' (R;,0)cosmadé

i1 "0

| . —
j [" T (R.0)sinmade

jiﬁ Ei(Ri,H)sin mode,
i=1 "

—3
P

—3
Pn1
—3

Qy

—3

Qs
—3
Ru

—3
Rn1
—3
Su

—3
Sn1

:(ﬂj.;j . (R, 0)sinmode

—4
P

—4

Pn1

—4

Qu

Qui
—4

Ri1
—4

Rn1
Su

—4

Sn1

—4

Pn

—4

Quy

Qu
—4
Rin
—4

Rnan
Sin

—4

—4 N
Pan

Sw || =

_A4N_
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(63)

(64)

(65)

where j=1,2,3 and 4, | is the number of segments, R, is the coordinate r at the boundary and N

is the terms in the Fourier series. The frequency equation for determining the frequencies may
be obtained by equating the coefficient of the system of Eq. (62) or Eq. (64) to zero.

6. Numerical results and discussion
The frequency equations obtained in symmetric and antisymmetric cases given in Eq. (46)
and (47) are analyzed numerically for magneto electro elastic plate of polygonal (triangular,
square, pentagonal and hexagonal) cross-sections. The material properties of the electro-

magnetic material based on graphical results of Aboudi [33] are c, =218x10°N/m? ,
¢, =120x10°N/m* | ¢, =120x10°N/m? ,
Ces =49x10°N/m*

Q,, =265C/m* |

e =0
Qs = 345C/m?

e31

—2.5C/m?

Cyy = 215%10° N/m?
e, =7.5C/m?

&, =0.4x10"° C/Vm

, C, =50x10°N/m? |

0 =200C/m? |
£, =58x10°C/Nm |
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ty;, =—200x10° Ns®/C* | 1, =95x10°Ns?/C®> , m,=0.0074x10°NsNC

m,, = 2.82x10° Ns/VC .
The geometric relations for the polygonal cross-sections given by Nagaya [32] as

R /b=[cos(6-, )T, (66)

where b is the apothem. The relation given in Eq. (66) is used directly for the numerical
calculation. The dimensionless wave numbers, which are complex in nature, are computed by
fixing @ for 0<Q<1.0 using secant method (applicable for complex roots). The basic
independent modes like longitudinal and flexural modes of vibration are analyzed and the
corresponding non-dimensional wave numbers are computed. The polygonal cross-sectional
bar in the range =0 and 9=~ is divided into many segments for convergence of wave
number in such a way that the distance between any two segments is negligible. The
computation of Fourier coefficients given in Eq. (44) is carried out using the five point
Gaussian quadrature.

-~
vy T~

. “-‘_\k
2 T
_ \R MH“H H““a

6,=0" =0 6,=0" y,=30

6,=36 y,=T72 6,=60 y,=72

&, =108 y; =144 6, =120 ¥, =150

6, =180 I=3 6,=180" =3
(c) (d)

Fig. 1. Geometry of ring shaped polygonal plates
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Longitudinal modes of polygonal plates. In case of longitudinal vibration of square
and hexagonal cross-sectional plates, the displacements are symmetrical about both major and
minor axes, since both the cross-sections are symmetric about both the axes. Therefore the
frequency equation is obtained by choosing both terms of n and m as 0, 2, 4, 6... in Eq. (46).
During flexural motion, the displacements are anti-symmetrical about the major axis and
symmetrical about the minor axis. Hence the frequency equation is obtained by
choosing n, m=1, 3, 5in Eq. (46).

Flexural modes of polygonal plates. In flexural mode of square and hexagonal cross-
section, the vibration and displacements are antisymmetrical about the major axis and
symmetrical about the minor axis The vibrational displacements are symmetrical about the x
axis for the longitudinal mode and anti-symmetrical about the y axis for the flexural mode in
the triangular and pentagonal cross-sectional plates, since the cross-section is symmetric
about only one axis. Therefore n and m are chosen as 0, 1, 2, 3... in Eq. (47) for the
longitudinal mode and n, m=1, 2, 3 ... in Eq. (47) for the flexural mode.

Dispersion analysis. The variation of circumferential stress o, with the non-

homogeneous parameter m is discussed for different cross section of the magneto electro
elastic plate in Fig. 2. It is clear that, the circumferential stress propagation behavior which is
caused by the non-homogeneous parameter m is decreasing in all the cross section of the
plates. Fig. 3 shows the variation of the radial stress o, with respect to the non-nomogeneous
parameter m of the magneto electro elastic plate for various cross section of the magneto
electro elastic plate. From the curves in Fig. 3, it is clear that the radial stresses are higher in
lower non-homogeneous parameter m and decreases slowly in the remaining range with small
oscillation in the hexagonal plate. The parameter m is effective in the stress distribution of the
entire cross sectional plate.

Figure 4 depicts the variation of the radial strain e, with respect to the non-
homogeneous parameter m of the magneto electro elastic polygonal cross sectional plate. In
Fig. 4, the radial strain obtain the positive values in the range 0 <m<0.075 for all cross
sectional plates, then the radial strain distribution goes on increasing and vanishes on the
domain m>0.25.The trend is same in circumferential strain €,, in Fig. 5 for all type of cross
sectional plates, except there is a small deviation in the starting range of the non-
homogeneous parameter m.

0.02 -~
0.018 - Triangle
0.016 - .\. --------- Square
\
0.014 - ~ | = Pentagon
0.012 I~ N
N N - - = Hexagon
(@) 0.01 A S ~
69 \\\ .\.
0.008 - . -,
\\\\ ~ . -
0.006 —-... Seeel ‘..
0004 | e TTeeal | IR T
0002 —0u [ S
0 . . o
0 0.1 0.2 0.3

Parameter m
Fig. 2. Variation of circumferential stress versus parameter m for different cross sections of
the plate
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Fig. 3. Variation of radial stress versus parameter m for different cross sections of the plate
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Fig. 4. Variation of radial strain versus parameter m for different cross sections of the plate
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Fig. 5. Variation of circumferential strain versus parameter m for different cross sections of

the plate
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Fig. 6. Variation of induced electric field versus parameter m for different cross sections of
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Fig. 7. Variation of induced magnetic field versus parameter m for different cross sections of

the plate

A graph is drawn between the variations of induced electric field versus the non-
homogeneous parameter m of magneto electro elastic plate of polygonal cross sections in
Fig.6. From the Fig.6, it is clear that the displacement of induced electrical energy is getting
negative values in the range 0<m<0.1, but for the higher values of m it becomes constant
for all the cross sections of the plate. The transfer of electrical energy is higher in the lower
values of the parameter m as compared to the higher values and this cross over point
represents the transfer of electrical energy between modes of vibration of polygonal plates.
The variation of the induced magnetic field versus the non-homogeneous parameter m of
magneto electro elastic polygonal plates is analyzed in Fig. 7. From these curves it is clear
that in the entire cross sectional plates, the induced magnetic field takes negative values in the
range 0.01<m<0.15 but for m>0.15 slowly it vanishes.
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7. Conclusion

The effect of magnetic field and non-homogeneity in a piezoelectric plate of polygonal cross
sections is studied using the linear theory of elasticity. The wave equation of motion based on
two-dimensional theory of elasticity is applied under the plane strain assumption of plate of
polygonal shape, composed of homogeneous transversely isotropic material. The frequency
equations are obtained by satisfying the irregular boundary conditions of the polygonal plate
using Fourier expansion collocation method. The analytical results obtained in the physical
domain have been computed numerically for a magneto electro elastic material. The
numerically analyzed results for the stress, strain, displacements and induced electric and
magnetic fields have been presented graphically. The polygonal plates, as structural elements,
are widely used in construction of oil pipes, submarine and flight structures to ensure the
strength and reliability, acted upon by nonuniform loads.

Appendix A

. (B(8-1)3,(ar)+(ar) 3, (ar))(L+sin® (0-7,))-(8(8+1), (ar)+(ar) I, (ar)) .
" | (Ccos® (0-7))+(ar)’((1+L)cos® (0-7)+ Lsin® (0~ 1)) 3, (ar)
-n{(B-1)3,(ar)+(ar)d,,(ar)}sin2(6-y)sinng

(B(B-1)3, (ar) (ar)d,, (ar))([+sin2(9—yi))—(ﬂ(ﬂ+1)Jﬁ.(ar)+(ar)Jﬁ+1(ar))

" (L+cos*(0-7)) )2((1+L )cos® (6- yi)+[sin2(9—;/i))Jﬁ(ar) cosng
{(A-1)3; (a ) (ar)d . (ar)jsin2(0-y,)sinng
e2=0 el=0

(n(6-1)3, (kr)+(kr)J,, (kr))cos2(6—y,)cosnd
h —{5(5“ +{n2_(kr) JJa(ar)+(ar)J5+l(al’)J Sin2(6 = )sinng
(

2 2
2(p3, (ozr)—(ar)J/M(ar))Jr((ozr)2 -p° —nz)Jﬂ (ar)}cosn@sin 2(0-7)

+2n{(B-1)3,(ar)—(ar)d,,(ar)}cos2(6-y,)sinng

£2 = fn3:0
2n (83,5 (kr)—(kr) s, (kr )cosn95|n2 0-7)

f4= sinn@cos2(6-,)
+2(53; (kr)—(kr) ., (kr))+ ( -5 -’ )J (ar)

+ 2n{(/3—1)Jﬂ (ar)—(ar)J[M(al‘)} cos2(6-y,)sinng
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