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Abstract. By the method of molecular dynamics a study in the work is made of the statistical 
characteristics of a quasi-breather in a model CuAu crystal. The phonon spectrum of this 
model crystal, the dependences of mean-square deviation, the coefficient of variation and the 
average frequency of the model quasi-breather on the time of its existence are obtained. The 
statistical data analysis allows for the conclusion that the quasi-breather model solution in the 
model considered (which uses the interatomic potential obtained by means of embedded atom 
method (EAM)) slightly differs from the one in the corresponding exact breather. 
Keywords: quasi-breather, discrete breather, nonlinear dynamics, soliton 
 
 
1. Introduction 
Solitary waves are among the most interesting and important objects of nonlinear physics 
relevant for practical applications [1, 2]. Despite the fact that solitons were discovered more 
than 180 years ago, the number of studies devoted to their properties is still growing. 
Recently, there has been growing interest in the investigation of discrete nonlinear systems 
where the existence of dynamic solitons is possible. High-amplitude, spatially localized time-
periodic vibrational modes in nonlinear crystals with translational symmetry called discrete 
breathers (DBs) belong to the class of the above mentioned dynamical solitons [3]. 

There are experimental evidences of formation of such localized excitations in different 
physical systems, including spin lattices in antiferromagnets [4], the lattices of coupled 
nonlinear optical waveguides [5], the assemblies of micromechanical oscillators [6]. The 
application of such systems as an element base of promising radio-frequency filters, 
magnetometers and other devices [7] determines not only a fundamental but also a practical 
interest for the breathers. 

Discrete breathers can be divided into two types based on the nature of their frequency 
dependence on the amplitude [8]. In soft-type discrete breathers the frequency decreases as its 
amplitude grows (such discrete breathers can only exist in the crystals having a slot in the 
phonon spectrum: their frequency lies in the phonon spectrum slot, and therefore they are 
called slotted), while a reverse situation occurs with the hard-type discrete breathers (they 
may have frequencies both in the slot and above the phonon spectrum). Discrete breathers 
with a soft-type of nonlinearity can be excited in diatomic crystals, for example, in NaCl [8], 
Pt3Al [9-14], as well as in graphene and grafane [15]. Breathers with a hard type of non-
linearity exist in pure metals with FCC –, BCC –, and HCP – structures. 

Depending on the problem formulation we speak of the discrete breathers with either an 
infinite lifetime (in this case, the solution is always periodic in time [15] and the 
corresponding family of trajectories has a null measure) or with a finite lifetime, so-called 
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quasi-breathers - such solutions have a non-zero probability measure and can be implemented 
in physical systems or in statistical numerical experiments [16]. A discrete breather, as a 
strictly time-periodic object, is obtained by means of numerical simulation only provided that 
the initial conditions of the Cauchy problem are perfectly set for a certain diversity of small 
dimension in the multidimensional space of all possible initial values of coordinates of 
individual particles and their velocities. Such fine-tuning is difficult to fulfill even within a 
computational experiment. Moreover, it is practically impossible to do when performing any 
physical experiments, particularly in cases when the breather-like objects arise spontaneously. 

Therefore, the paper [16] proposed the concept of quasi-breathers as some dynamic 
objects localized in space, but not strictly time-periodic. For that purpose, a certain criterion 
of proximity of a quasi-breather to its corresponding exact breather was formulated. It is 
based on the calculation of mean-square deviation η(tk) of the oscillation frequencies of 
selected breather particles found at some interval in the vicinity of time tk, and calculating the 
mean-square deviation of the oscillation frequencies of a selected j-th breather particle at 
different time intervals. 

The objective of this paper is to fulfill a statistical evaluation of quasi-breathers 
characteristics in a model CuAu crystal. In this formulation, we will identify the concept of 
quasi-breather and quasi-breather model solution. The molecular dynamics method was 
selected as a research method in our paper. The choice of the method is due to a number of 
factors. Discrete breathers are very difficult to observe in a full-scale experiment given the 
fact that they are not topological defects; they have a lifetime of several thousand periods of 
atomic oscillations, which is about 0.1ns. Besides, they can move at high velocities in metals. 
At the same time, computer simulation has become a very successful research method in 
condensed matter physics and materials science. This fact is due to the continuous power 
growth and availability of computers, development and software implementation of numerical 
methods. Being based on the well-tested interatomic potentials, the molecular dynamics 
method is one of the most effective methods of studying discrete breathers. When we speak of 
the molecular dynamics method in more detail, it should be noted that it provides an 
opportunity to solve the issues related to the problems of structural energy transformations 
both in crystalline and non-crystalline materials. Besides, this method makes it possible to 
design many properties of the system both thermodynamical (e.g., energy, pressure, entropy) 
and kinetic (diffusion coefficients, frequencies of atom oscillations). Moreover, the process 
dynamics is studied on a real time basis in this method. 
 
2. Model description and experimental procedure 
We considered the biatomic system CuAu. As it has already been mentioned above, the 
investigation was performed by means of the well-known molecular dynamics method. This 
method was implemented using LAMMPS Molecular Dynamics Simulation, the package for 
modular dynamic modeling [17], which uses well-tested many-body interatomic potentials 
built according to the embedded atom method (EAM-potentials). 

We considered a three-dimensional crystal containing 48000 atoms (Fig. 1). Periodic 
boundary conditions were imposed along all directions. 
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Fig. 1. The view of a 3D CuAu crystal containing 48000 atoms 

 
The potential obtained by the method described in [18] for the Cu-Au system was used 

in the calculations. The process of selecting the interatomic potentials is an important task 
worth a detailed consideration. The home-made software [18] generates EAM-potentials of 
alloys using the rapid fitting procedure by combining the previously developed elemental 
potentials. More specifically, we applied the Finnis-Sinclair potentials for alloys determining 
the energy of each atom in the system, using the expression: 
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This equation consists of three types of functions: embedding functions (F), electron 
density functions (ρ), and pairwise interaction functions (φ). In this formula there is an 
embedding function for each element type, one electron density function for each permutation 
of two types of atoms (a, p), and a pairwise interaction function for each combination. For 
binary potentials, there are only three functions that need to be selected in case of using 
elementary conditions from existing potentials: ραβ, ρβα, and φαβ. Since there are no triple 
conditions in the Finnis-Sinclair formula, potentials with more than two elements can be 
created by combining all the information contained in the binary files. The method proposed 
by the authors of the article allows to combine elemental EAM potentials and to establish the 
potentials for alloys using the density functional theory (DFT) data. 

Firstly, the approach of simple "rule of mixtures" is used for compensation of the 
difference between the lattice parameters and elasticity modulus predicted by the DFT and 
measured experimentally. The elastic moduli and lattice parameters calculated for 
intermetallic compounds are multiplied by the effective correction factor, which is the average 
of the elementary correction factors taken in the proportion of elements fractions. Secondly, 
single-element potentials are adapted to improve compatibility in binary and multicomponent 
potentials in such a way as to preserve all the initial states of the system. Thirdly, in the case 
of bonding of two elemental potentials, the maximum cut off distance is adopted for the 
binary potential. The electron density functions and the interaction of the original pair 
potentials are defined as equal to 0 at the distances greater than the cut off radius. Since most 
of interatomic potentials are available in a tabular format with functions defined at discrete 
points, this implementation uses cubic spline interpolation in order to calculate the values of 
functions in between the tabulated points. 

The next step was the installation of cross-potentials. The Finnis-Sinclair composition 
for the EAM potential is used for every alloy potential considered. For a binary system, two 
embedding functions (Fα, Fβ), four electron density functions (fαα, fαβ, fβα, fββ) and three pair 
interaction functions (φαα, φββ) are used. Similarly to the case of single-component potentials, 
two-component ones are combined by converting the embedded function so that it exists on 
the same interval and assumes the maximum cut off radius. While the "pure" elemental 
potentials are used to create each double file, the electron density and interaction functions of 
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the pair contained in the original binaries are sufficient to create higher-order potentials 
without any additional equipment. In addition, the properties of each binary system and the 
original pure elements remain in these new potentials. The potentials created by means of the 
proposed technique were confirmed by comparison with the experimental results and existing 
potentials for the alloys. In addition, the dependence of the accuracy of binary potentials on 
the source of elementary potentials was estimated. 

In order to analyze the possibility of the existence of DBs in CuAu crystal, the density 
of the phonon states of the crystal was calculated (see Fig. 2). The absence of a gap in the 
CuAu phonon spectrum dictates the impossibility of DB with soft nonlinearity type in this 
system. [19, 20]. This was confirmed in [21]. 

 

 
Fig. 2. The density of phonon states of CuAu crystal 

 
The process of searching for discrete breathers in crystals involves selecting initial 

conditions-deviations of atoms from the equilibrium position or setting initial velocities. 
For pure metals or alloys with a small difference in the atomic masses of the 

components, the excitation of DBs with a hard type of nonlinearity has some peculiarities. 
Thus, the authors of [19] proposed an ansatz for excitation of DBs in pure fcc and bcc 
metals, setting the DB profile in a closely packed atomic row by setting atomic 
displacements and velocities according to physically motivated functions. The 
displacements of the atoms were realized in such a way that the neighboring atoms 
oscillated in antiphase [22]. 

The Gaussian function (2), adapted for crystal conditions was used to excite a DB in 
the CuAu crystal 
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where 0A  defines the initial amplitude of the central atoms of a DB, x is the relative 
coordinate of a pair of atoms in a row, and parameter C is the degree of spatial localization of 
DB. Varying the values 0A  and C, we select the profile of the discrete breather, thereby 
setting the initial deviations from the equilibrium position for the atoms included in the DB 
oscillations. 
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Unlike the exact discrete breathers, quasi-breathers are not dynamic objects strictly 
periodic in time, although they are localized in space. They arise in any sufficiently small 
deviations from the exact breather solutions in multidimensional space of any and all initial 
conditions while solving the Cauchy problem for the original differential equations, since 
there is no complete suppression of contributions from the oscillations of peripheral particles 
with their natural frequencies in this case. Thus, "dictatorship weakening" on the part of the 
breather nucleus (a single central particle forms a nucleus as well in case of a symmetric 
breather considered by us, and it is being formed by its two central particles in case of an 
antisymmetrical breather) leads to the presence of small contributions with different 
frequencies in the breather solution. These small contributions may be detected in the 
oscillations of all chain particles including the central ones. If we estimate (with reasonable 
precision) the oscillation frequencies of all quasi-breather particles calculated at a certain time 
interval near t = tk, they will not be strictly identical. In light of this, let us find the mean-
square deviations η(tk) of the oscillation frequency of different breather particles from the 
average breather frequency ϖ: 
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The more the value η(tk), the more the quasi-breather solution differs from the exact 
breather solution, for which η(tk)=0 at any particular time tk. 
 
3. Results and discussion 
The distribution of the phonon modes, i.e. the crystal phonon spectrum is important for 
the existence of quasi-breather on a first-priority basis. The reduced density of the 
phonon states of CuAu was compared with the oscillation frequencies of the quasi-
breather. Below is a calculation of the statistical characteristics of a quasi-breather. 

The dependence of the model quasi-breather mean-square deviation η on its lifetime tk 
is shown in Fig. 3. 

 

 
Fig. 3. Dependence of the model quasi-breather mean-square deviation η on its lifetime tk (in 

picoseconds (ps)) 

108 А.М. Eremin, P.V. Zakharov, M.D. Starostenkov



The mean-square deviation characterizes the measure of data scattering. In our case, this 
is a deviation of peripherical atom frequencies of model quasi-breather from the quasi-
breather nucleus frequency. It is apparent from Fig. 3 that the quasi-breather mean-square 
deviation ranges from 0.01261065 to 0.02610272, which is equivalent to slight scattering of 
peripheral atom frequency from the model quasi-breather nucleus frequency. 

The mean-square deviation gives an absolute estimation of the measure of spread. 
Therefore, in order to understand how much variation is large relative to the values 
themselves (i.e., regardless of their scale), a relative index is required. Such an indicator is 
called the coefficient of variation and is calculated by the following formula: 
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By this indicator, it is possible to compare the homogeneity of the most diverse 
phenomena, regardless of their scale and units of measurement. Table 1 shows the exponents 
of the coefficient of variation of V from the lifetime of the quasi-breather tk. 
 
Table 1. The exponent of the coefficient of variation of V from the lifetime of the quasibriser 
tk (in ps) 

tk V 

5 0.00220377958477173 
10 0.00286022261352874 
15 0.00374032727309376 
20 0.00435946841613917 
25 0.00491586066089457 

 
The dependence of the model quasi-breather mean frequency ωmean on its lifetime tk is 

shown in Fig. 4. 
 

 
Fig. 4. Dependence of the model quasi-breather mean frequency ωmean (in THz) on its 

lifetime tk (in ps) 
 

It is apparent from Fig. 3 and 4 that the deviation of the model quasi-breather frequency 
of peripherical atoms from the quasi-breather nucleus frequency is extremely negligible. 
Moreover, the medium frequency ranges from 5.30989773163211 THz to 
5.72228656205187 THz. 
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For a group of atoms contained in the model quasi-breather, the mathematical 
expectation (the sample mean) of an ungrouped sample of the mean frequencies 
(5.72228656205187, 5.60811384473751, 5.39908960106847, 5.39342834099743, 
5.30989773163211) is calculated by the formula: 
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The mathematical expectation of the initial sample is 5.486563 THz, which is slightly 
higher than the upper limit of the phonon spectrum of the CuAu crystal (see Fig. 2). 

The variance of the same ungrouped sample is calculated by the formula: 
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The result of the calculation by the formula above is 0.0229469. The obtained values 
show that within the framework of this model of the CuAu crystal, one can speak of the 
proximity of the model quasi-breather to the corresponding exact breather. Besides, the 
following statistical characteristics and functions were calculated within the limits of this 
model: grouped statistical array of absolute and relative frequencies, range of absolute and 
relative frequencies, histogram of relative frequencies, empirical distribution function. 
 
4. Conclusion 
The statistical characteristics of a quasi-breather with the hard type of nonlinearity were 
calculated by means of the molecular dynamics method. The main characteristics include the 
mean square deviation of the frequencies of some particular atoms in the breather from the 
mean value of the quasi-breather core frequency, as well as the coefficient of variation at 
different stages of life of the object under study. 

It should be noted that the final quasi-breather destruction occurs at the moment when 
the frequencies mean square deviation exceeds the difference between the quasi-breather 
mean frequency and the crystal phonon spectrum upper boundary. At this moment the 
oscillations delocalization and the energy dissipation through the crystal in the form of low-
amplitude thermal lattice vibrations occur. It is shown that the obtained quasi-breather is 
slightly different from the corresponding exact breather. This may indicate the stability of the 
obtained discrete breather in the model cells and the possibility of its excitation in real alloys 
of the composition examined in the work 
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