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Abstract. We consider the generic gradient elasticity theory of Mindlin-Tupin and try to 
establish a class of applied models of gradient elasticity, for which the boundary value problems 
of the gradient theory with static boundary conditions are divided into a sequence of two 
subtasks, one of which is classical. Such applied models are very effective in applications, 
because their solutions reduce exactly to a consistent solution of boundary value problems of 
the second and not of the fourth order. We consider gradient theories with a general structure 
of tensors of gradient modules that satisfy potentiality conditions and additional symmetry 
conditions, which is considered as a criterion of correctness. 

It is shown that their gradient tensors of the elastic modules are represented in the form 
of an expansion with respect to the tensor basis of five sixth-rank tensors, three of which satisfy 
a special property. Each of these basis tensors is represented as a convolution of fourth-rank 
tensors, and the corresponding quadratic form is a convolution of vectors.  

It is shown that for the traditional gradient Mindlin-Tupin theory, the “classical” static 
conditions on the body surface are not satisfied locally. However, if the gradient modules are 
represented as a convolution of the “classical” tensors of elastic moduli, then the set of the 
boundary value problems of such gradient theory admits a full fractionation of the initial 
boundary value problem into two: the “classical” boundary value problem and the “cohesive” 
boundary value problem. 

It is established the structure of the applied gradient models with such property of 
separating boundary value problems. They are particular cases of gradient elasticity theories 
with gradient modulus tensors, representable in the form of an expansion in three basis tensors 
of the sixth rank, satisfying the properties of the representation in the form of convolution via 
fourth-rank tensors. 

We formulated “vector” gradient Mindlin-Tupin model that preserves the classical form 
of static boundary conditions. Such a model leads to a specific variant of the gradient theory 
with a single non-classical modulus, or one-parametrical model. It is shown that the obtained 
gradient model can be considered as some generalization of the well-known applied theory 
GradEla providing for it the separation of boundary value problems. 
Keywords: gradient theories, scale parameters, separation of boundary value problems, 
“classical” displacement field, “cohesive” displacement field. 
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1. Introduction 
In the gradient theory of elasticity the density of potential energy depends not only on first 
derivatives of the displacement vector, but also on the second derivatives of the displacement 
vector (first derivatives of deformation tensor in the framework of the Midlin’s Form II models 
[1]). So, the statement of the gradient theory includes not only classical moduli of elasticity but 
also physical constants which dimension are different from the classical ones by the square of 
length. The gradient theory of elasticity was first formulated in [1, 2]. It was shown that in the 
general case for an isotropic medium, the model contains seven material constants – two 
classical Lame parameters and five additional modules. 

The development of continuum media models accounting for various 
micro/nanostructures parameters beyond the theory of classical elasticity appears to be crucial 
for the description of short-range interactions, cohesion forces, and also for the modeling of 
other size-dependent effects in the framework of generalized elasticity and plasticity theories. 
Applied gradient model was developed initially by Aifantis [3]. Robust gradient models were 
developed for gradient elasticity by Aifantis and co-workers [4-6]. Later it was shown that, 
within the framework of the gradient theory of elasticity, it is possible to eliminate of the 
singularities of crack tips [6-8] and dislocations [9-11], correctly describe wave dispersion  
[12-13] and scale effects for the composite materials [14-22] and others. In this case, usually 
there are used simplified versions of the gradient theory of elasticity, which contain fewer 
additional parameters. The determination of additional physical constants requires the 
involvement of specific experimental approaches [23, 24] or methods of the  
molecular-dynamics modeling [21, 25-27]. Usually, there are used the applied models that, 
instead of five modulus [1, 2], contain three additional parameters [23,28] or two parameters 
[29] or a single additional scale parameter [4-6, 30]. A detailed classification of simplified 
models of the gradient theory of elasticity was considered in a recent paper [31, 32]. 

At the present time, gradient theories are actively developed and are increasingly used in 
various applied problems. However, fundamental questions of the construction of these theories 
are also discussed. In particular, there are discussed the physical meaning of additional high-
order stresses [31,32], the problem of the correct formulation of models of gradient bars and 
plates [33-36], the problem of the correct formulation of the equilibrium equations and 
boundary conditions [32, 36-38], the problem of constructing models with allowance for the 
requirement of symmetry conditions [29] . 

In this paper we discuss the problem of constructing a gradient theory of elasticity, in 
which static boundary conditions and equilibrium equations are written in terms of the same 
tensor of generalized stresses. In this paper, such stresses are suggested to call as “classical” 
stresses but not the “total” stresses introduced using terminology of E. Aifantis because the 
equilibrium equations are a divergence of these stresses, and the boundary conditions represent 
their convolution with the unit vector of normal to the surface of the body.  The class of gradient 
models considered in the paper is the most attractive from a practical point of view, since for 
such models the solution of boundary value problems can often be simplified, sequentially 
solving the classical problem of elasticity theory and then solving the problem for an equation 
of Helmholtz type in which the right-hand side is the classical solution. Note that the known 
one-parameter gradient theories (so-called GradEla, SSGET etc. [29, 36, 37]) do not satisfy 
these requirements and their variational formulation leads to the appearance of natural boundary 
conditions in the complicated form [29,32,36]. In this paper we show the possibility of 
constructing a theory of GradEla type that satisfies these requirements, but with an asymmetric 
tensor of stresses. 
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2. «Vector» gradient model 
Let us consider the Lagrangian L of the Mindlin-Tupin model: 

, , , ,
1 ( ) .
2 ijmn i j m n ijkmnl i jk m nlL A C R R C R R dV= − +∫∫∫  (1) 

Here ( )ijmn ij mn im jn in jmC λδ δ µ δ δ δ δ= + +  is the tensor of classical modulus, ijkmnlC is the 
tensor of gradient modulus, ijδ  is the Kronecker delta, A - is the work of the external given 
forces in the volume and on the surface of the body, iR  is the displacement vector. 

We write down the conditions that determine the properties of the tensor of gradient 
elastic modules: 

1. Existence of the density of potential energy: 
( ) / 2.ijkmnl ijkmnl mnlijkC C C= +  (2) 

2. The symmetry condition, determined by the requirement of continuity of 
displacements: 

( ) / 4.ijkmnl ijkmnl ikjmnl ijkmln ikjmlnC C C C C= + + +  (3) 
As a result, taking into account conditions (2) and (3), we establish the general structure 

of the tensor ijkmnlC : 

1

2

3

4

5

( )

( )

( )

( )

( ).

ijkmnl

ij kl mn ik jn ml ij kn ml mn lj ik

ij km nl mn li jk ik jm nl ml ni jk

in jl km mj nk li in mj kl il jn mk

im jn kl jl nk

im jk nl

C

C

C

C

C

C

δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ

δ δ δ

=

= + + + +

+ + + + +

+ + + + +

+ + +

+

 (4) 

Consequently, in the general form, the gradient elastic modules of the Mindlin-Tupin 
model depend on five parameters. 

We note that sometimes the symmetry requirement for the first two indices is imposed. 
Then three additional relations are introduced for the parameters of the gradient tensor of the 
elasticity modulus (4): 

1 2

2 5

3 4

( )( )
( )
( )( ) 0,

ijkmnl ijr

ml knr mn klr

nl kmr

kl nmr nk lmr

C Э

C C Э Э
C C Э
C C Э Э

δ δ

δ

δ δ

=

= − + +

+ − +

+ − + =

 

where ijrЭ  is the permutation symbol. 
In this case, the gradient part of the energy density of the general model is two-

parametrical. Let’s call such a gradient model a completely symmetric gradient model.   
We propose to introduce the definitions of basis tensors of sixth rank: 
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1 2 3 4 5
1 2 3 4 5
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ijkmnl ijkmnl ijkmnl ijkmnl ijkmnl ijkmnl
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C C C C C Cδ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ

= + + + +

= + + +

= + + +

= + +
4

5

) .

( )

( )

l il jn mk

ijkmnl im jn kl jl nk

ijkmnl im jk nl

δ δ δ

δ δ δ δ δ δ

δ δ δ δ






+


= +
 =

 (5) 

Basis tensors 1
ijkmnlδ , 2

ijkmnlδ  and 5
ijkmnlδ  in (5) have the same structure: each term in them is 

the product of three Kronecker tensors, one of which has both indices belonging to the first 
triple of the indices of the sixth-rank tensor ijkmnlC , the second one has indices belonging to 

different triples of indices of the sixth-rank tensor ijkmnlC , and the third one has indices belonging 

to the second triple of indices of the sixth-rank tensor ijkmnlC . The basis tensors  3
ijkmnlδ  and 4

ijkmnlδ  
also have the same structure, but it differs from the previous one: all three Kronecker tensors in 
them have indices belonging to different triples of indices of the sixth-rank tensor ijkmnlC  (one 

index is from the first triple, another is from the second triple of the indices of the tensor ijkmnlC
). The density of the gradient potential energy, as a result, is divided into the sum of two 
fundamentally different terms. The first term is determined by the first group of basis tensors 

1
ijkmnlδ , 2

ijkmnlδ  and 5
ijkmnlδ , contains, respectively, the modules 1 2 5, ,C C C and determines the 

quadratic form, composed of the components of two vectors ,,i k kiR R∆ . The second term is 

determined by the second group of basis tensors 3
ijkmnlδ  4

ijkmnlδ , and contains, respectively, the 

modules 3 4,C C  and determines a quadratic form composed of the components of the tensor of 
the third, but not of the first rank. 

It can be shown, for example, that the completely symmetric theory of gradient 
deformation, and the theory of Aero-Kuvshinsky, which is considered the theory of gradient 
rotations, contain two types of basis tensors: one of the first type, constructed as a linear 
combination of basis tensors 1

ijkmnlδ , 2
ijkmnlδ  and 5

ijkmnlδ , second of the second type, constructed as 

a linear combination of basis tensors 3
ijkmnlδ  and 4

ijkmnlδ . 
Further, we will concentrate on the particular cases of gradient models, which contain 

only basic tensors of the first type. Preference is given to this particular case, because all three 
basis tensors 1

ijkmnlδ , 2
ijkmnlδ  and 5

ijkmnlδ  can be represented as convolutions with respect to one 
index of two tensors of the fourth rank. 

Theorem: "All three basis tensors 1
ijkmnlδ , 2

ijkmnlδ  and 5
ijkmnlδ , can be represented as 

convolutions with respect to one index of two tensors of the fourth rank" 
Proof. In each term of the basis tensor 1

ijkmnlδ , 2
ijkmnlδ  and 5

ijkmnlδ  there is a factor containing 
indices from different triples of the sixth-rank tensor. We represent it as a convolution of two 
tensors of Kronecker, for example: im ia maδ δ δ= . In a similar way, we will deal with each 
Kronecker tensor containing indices from different triples: 
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1 ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )( ) ( )( ) (

ijkmnl ij kn ml mn lj ik ij kl mn ik jn ml

ij kn ml mn lj ik ij kl mn ik jn ml
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ij ka ml na ik ja mn la ij

δ δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ

= + + + =

= + + + =

= + + + =

= + + )( ) ( )( )
( )( ) ( )( )
( )( )

ka mn la ik ja ml na

ij ka ml na mn la ik ja mn la ml na

ij ka ik ja mn la ml na

δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ

+ =

= + + + =

= + +

 

2 ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )( ) ( )( ) (

ijkmnl ij km nl mn li jk ik jm nl ml ni jk

ij km nl mn li jk ik jm nl ml ni jk

ij ka ma nl mn la ia jk ik ja ma nl ml na ia jk

ij ka nl ma jk ia mn la ik

δ δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ

= + + + =

= + + + =

= + + + =

= + + )( ) ( )( )
( )( ) ( )( )

ja nl ma jk ia ml na

ij ka ik ja nl ma jk ia mn la ml na

δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ

+ =

= + + +

 (6) 

5 ( )
( )( )

ijkmnl im jk nl

jk ia nl ma

δ δ δ δ

δ δ δ δ

= =

=
 

As a result, the gradient model, built on basic tensors (6), takes the following form: 

1

2

5

( )( )

[( )( ) ( )( )]

( )( ).

ijkmnl

ij ka ik ja mn la ml na

ij ka ik ja nl ma mn la ml na jk ia

jk ia nl ma

C

C

C

C

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ

=

= + + +

+ + + + +

+

 (7) 

In the basis (6), the doubled density of the potential energy of curvature of displacement 
has the form: 

, , 1 , , 2 , 54 4 .ijkmnl i jk m nl i ia m ma i ia a a aC R R C R R C R R C R R= + ∆ + ∆ ∆  (8) 
The quadratic form (8) can be established using equations (7). This form is canonical, and 

positive definite. 
We note that in the expression for the gradient part of the potential energy density there 

are convolutions of the components of two vectors ,i iaR  and aR∆ . Therefore, in what follows, 
we shall call this particular three-parameter model the "vector" gradient theory of elasticity. 

For such a theory, it is easy to establish conditions for positive definiteness. Indeed, in 
accordance with the Sylvester criterion, for (8), we obtain the following system of inequalities:  

1

1 5 2 2

0
.

0
C
C C C C

 >


− >
 (9) 

It follows from (9) that 5 0TC >  too. Indeed, let us introduce instead of the modulus 5C , 
another modulus by the relation: 

2
1 5 2 2 .C C C C С− =  (10) 

As a consequence of (10), the second of the conditions (9) is identically satisfied. It also 
follows from (10): 

2
1 5 2 2 0.C C С C C= + >  

From the first condition of (9) and (10) we obtain: 
2

2 2
5

1

0.С C CC
C
+

= >  
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3. On classical boundary conditions for the “vector” gradient model 
Let us now consider in more detail the gradient theory, which is determined by the potential 
energy (1), (8) and which can be called the variant of the “vector” gradient theory. Using the 
relation (8), the density of the potential curvature energy in the "vector" theory (6) can be 
represented as a canonical positive definite quadratic form. 

, , 1 , , 2 , 5

2
2 2

, , 2 , 5
5

2
2 2

, , 5 , ,
5 5 5

4 4

4 4

2 24 ( )( ).

ijkmnl i jk m nl i ia m ma i ia a a a

i ia m ma i ia a a aT

i ia m ma a i ia a i ia

C R R C R R C R R C R R

С C C R R C R R C R R
C

C CС R R C R R R R
C C C

= + ∆ + ∆ ∆ =

+
= + ∆ + ∆ ∆ =

= + ∆ + ∆ +

 (11) 

We can state that the “vector” theory in the general case contains three nonclassical 
moduli, under certain restrictions (9) due to positive definiteness of the canonical quadratic 
form of the density of the potential curvature energy (11). 

We write the variational equation of the "vector" gradient model. From the requirement 
of stationarity of the Lagrangian (1) it follows that: 

, , , ,

, , 1 , 2 , 2 , 5

, ,

1 2 , 2 5 ,

2 , 5

[ ]

[ (4 4 ) (4 ) ]

[

[4( ) (4 ) ]

(4 ) (

ijmn m n i j ijkmnl m nl i jk

ijmn m n i j m ma a i ia i ia a a

ijmn m n i j

m ma a i ia

i ia a a

L A C R R C R R dV

A C R R C R C R R C R C R R dV

A C R R

C C R C C R R

C R C R R R

δ δ δ δ

δ δ δ δ

δ δ

δ

δ

= − + =

= − + + ∆ + + ∆ ∆ =

= − +

+ + + + ∆ +

+ + ∆ ∆ −

∫∫∫
∫∫∫
∫∫∫

, )] .j ja dV

 

Using the relation: 
, , , , , ,( ) ( ) ( )a jj j ja m jn ma nj m jn mj na m jn ma nj mj na m jn mnk ajkR R R R R R Э Эδ δ δ δ δ δ δ δ− = − = − = , 

we can found that the procedure of integrating  by parts  for the gradient part of the potential 
energy density will not require further transformations of the surface integral: 

, , 1 2 5 , , 5 , ,

1 2 , 2 5 ,

2 , 5 ,

[ (4 8 ) ]

{[4( ) (4 ) ]

2(4 ) ( / 2) } .

ijmn m n i j a a i i a j m n mnk ajk

m ma a a i i

i ia a m n mnk j kja

L A C R R C C C R R C R R Э Э dV

C C R C C R n R

C R C R R Э n Э dF

δ δ δ δ δ

δ

δ

= − − + + ∆ − ∆ −

− + + + ∆ +

+ + ∆ −

∫∫∫
∫∫  

Indeed, let’s introduce the classical definitions for the volume changing deformations 
,i iRθ =  and deformations of spins , / 2k m n mnkR Эω = − . These parameters determine on the 

surface independent variations of linear combinations of normal and tangential derivatives of 
displacements, which do not require further integrating by parts. As a result, the variational 
equation of the “vector” model takes the form: 

, 1 2 5 , 5 , ,

, 1 2 5 , 5 ,

1 2 , 2 5 2 , 5

[( (4 8 ) ) ]

{[ ( (4 8 ) ) ]

[4( ) (4 ) ] 2(4 ) ( )} 0.

V
ijmn m n a a ij a c ijk ack j i i

F
i ijmn m n a a ij a c ijk ack j i

m ma a a i ia a k j kja

L C R C C C R C R Э Э P R dV

P C R C C C R C R Э Э n R

C C R C C R n C R C R n Э dF

δ δ δ

δ δ

δθ δ ω

= − + + ∆ − ∆ + +

+ − − + + ∆ − ∆ −

− + + + ∆ − + ∆ =

∫∫∫
∫∫  (12) 

Equilibrium equations can be obtained from (12) as the Euler equations: 
, 1 2 5 , 5 , ,( (4 8 ) ) 0.V

ijmn m n a a ij a c ijk ack j iC R C C C R C R Э Э Pδ− + + ∆ − ∆ + =  (13) 
We call attention to the fact that the second-rank tensor, which divergence is equal to the 

external volume force in the equilibrium equations (13), can conditionally be called the 
“classical” stress tensor: 
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, 1 2 5 5(4 8 ) 2 .ij ijmn m n ij k ijkC R C C C C Эτ θδ ω= − + + ∆ + ∆  (14) 
Since this tensor (14) satisfies three classical equilibrium equations of elasticity theory: 

, 0.V
ij j iPτ + =  (15) 

However, the “classical” stresses (14) differ from the “classical” ones, in the first place, 
in that this tensor is non–symmetric tensor, since the last term is antisymmetric when free 
indices are permuted. This term you can remove only if 5 0C = . Therefore, the vector model 
can’t operate with the concept of true “classical” stresses.  

On the other hand, the stress ijτ  satisfies not only the three classical equilibrium 
equations, but also the three classical static boundary conditions: 

( ) 0.F
i ij j iP n R dFτ δ− =∫∫  (16) 
Indeed, boundary conditions for the considered variant of the “vector” theory break up 

into three pairs of alternative boundary conditions. The static boundary conditions (16) during 
variations of displacements completely coincide with the classical ones. Three pairs of 
alternative nonclassical boundary conditions break up into a pair of scalar alternative boundary 
conditions: 

1 2 , 2 5[4( ) (4 ) ] 0.m ma a aC C R C C R n dFδθ+ + + ∆ =∫∫  (17) 
One of them is connected with variation of spherical tensor of deformation (see (17)). 

Two other pairs of alternative boundary conditions determine the possible work of some force 
vector 2 , 5(4 )a i ia af C R C R= + ∆  on the variations of another (plane) vector a k j kjav n Эω= : 

2 , 5(4 ) ( ) 0.i ia a k j kjaC R C R n Э dFδ ω+ ∆ =∫∫  (18) 

It is not difficult to verify that the vector a k j kjav n Эω=  in (18) does not have a projection 
onto the normal to the surface, that is, lies in a tangent plane to the surface of the body 

( ) ( ) 0a a k j kja a k j a jakv n n Э n n n Эω ω= = ≡ . 
Let us return to the equilibrium equations and investigate the possibility of separating the 

equilibrium operator into a product of the classical equilibrium operator and an additional, 
nonclassical one. In other words, we will find out whether it is possible to represent the operator 
of equations (13) in the form: 

2 2 2
, ,[ (...) ( )(...) ]{(...) (...) ( )(...) } 0.V

ij ij jk jk jk k il l l R Pω θ ωµ δ µ λ δ δ∆ + + − ∆ − − + =  (19) 
By successively applying to the displacement vector kR , first the operator in curly 

brackets (19), and then the operator in square brackets, we get: 
2 2

, , , ,( ) (2 ) ( ) (2 ) 0V
i j ji j ij i j ji j ji iR R R l R R l R Pω θµ µ λ µ µ λ∆ − + + − ∆ ∆ − − + ∆ + =  (20) 

Comparing (20) and (13), we find that the equations coincide if the parameters 2 2,l lθ ω  are 
related to nonclassical modules by the following relations: 

2
5

2 2
1 2

.
4 8 (2 )
C l

C C l l
ω

θ ω

µ

µ λ µ

 =


+ = + −
 (21) 

Applying the operator in curly brackets of equation (19) to the vector kR  (19), we obtain 
the definition of “classical” displacements iU : 

2 2 2
,

2 2
, ,

{(...) (...) ( )(...) }

( ) .
j jk jk jk k

j j k kj k kj

U l l l R

R l R R l R
ω θ ω

ω θ

δ δ= − ∆ − − =

= − ∆ − −
 (22) 

Taking into account the definition (22), the equilibrium equations (19) take the form of 
the Lamé equations of the classical theory of elasticity in displacements: 
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,[ (...) ( )(...) ] 0.V
ij ij j iU Pµ δ µ λ∆ + + + =  (23) 

Since the linear differential operators in (19) are commutative, the equilibrium equations 
can be rewritten in the following equivalent form: 

2 2 2 2
, ,2

( ){(...) (...) ( )(...) } [ (...) (...) ] 0.V
ij ij ij jk jk k il l l l R P

l ω θ ω
µ µ λδ δ δ

µ
+

− ∆ − − ∆ + + =  (24) 

The first of the operators in (24) is a generalized Helmholtz operator. Therefore, we can 
introduce a vector of "cohesive" displacements [14-16, 19, 20, 21], ju : 

2
,

2
, ,

( )[ (...) (...) ]

(2 )[( ) ].

j jk jk k

j k kj k kj

u l R

l R R R

µ λδ
µ
µ λ
µ

+
= − ∆ + =

+
= − ∆ − +

 (25) 

Taking into account the definition of ju , (25) the equilibrium equations give the 
equilibrium equations of the “cohesive” field: 

2 2 2
, ,( ) 0.

V
i

i j ji j ji i
Pl u u l u u lω θ µ

∆ − + − + =  (26) 

Let us consider the definitions (22) and (25) as a linear algebraic system with respect to 
the vortex field ,( )j k kjR R∆ −  and the potential field ,k kjR : 

2 2
, ,

2 2
, ,

( )
(2 )( )

j k kj k kj j j

j k kj k kj j

l R R l R R U

l R R l R u

ω θ

µ λ
µ

 ∆ − + = −

 +

∆ − + = −


 (27) 

It is easy to see that the equation system (27) can be rewritten in the following form: 
2

2 2 2

, 2

2

2 2

, 2

2

(2 ) 1 1( )
( )

(2 )[ ]
.

1 1( )

(2 )[ ]

j j j

j k kj

j j j

k kj

lR U u
l l lR R

l
l

R U u
l lR

l
l

θ

ω ω

θ

ω

ω

θ

ω

µ λ
µ

µ λ
µ

µ λ
µ

 +
− − −

 ∆ − =
+ −


 − +


= + −


 (28) 

The first of equations (28) determines the vortex field ,( )j k kjR R∆ − . Its divergence is, by 
definition, equal to zero. Therefore, taking into account (22), (28) we can write: 

2

, , ,2 .
(2 )k k k k k k

lR U u
l
θµ

µ λ
= −

+
 (29) 

The second of the equations (28) determines the potential field ,k kjR . Its rotor is zero, by 
definition: 

2

, , ,2 .m n mnr m n mnr m n mnr
lR Э U Э u Э
l
ω= −  (30) 

Accordingly, we can write the following equation for the rotor of the rotor: 
2

, , ,2( ) ( ) ( ).k m mk k m mk k m mk
lR R U U u u
l
ω∆ − = ∆ − − ∆ −  (31) 
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Substituting (30) and (31) into (23), we obtain the general solution of the “vector” 
gradient theory iR  through two fundamental vectors, one of which is a vector of “classical” 
displacements iU , and the second one is a vector of “cohesive” displacements iu : 

2 2 2 2
2 2

, , , ,2 2( ) ( ) .
(2 )i i i k ki k ki i k ki k ki

l l l lR U l U U l U u u u
l l
ω ω θ θ

ω θ
µ
µ λ

= + ∆ − + − ∆ − −
+

 (32) 

Let us write down the tensor of stresses in displacements. Substituting vector of 
displacements iR , with the help of  equation (32), into (14) and taking into account the 
definitions (22), we can get: 

,

2 2
, , ,2

2 2 2 2
2 2

, , , ,2 2

12 [ ] ( )[ ( )
(2 )

( ) ] 2 .
(2 )

ij ijmn m n

k k ij im jn in jm m n k kmn

k kmn m n k kmn k kmn k ijk

C U

l u l U U
l

l l l ll U u u u l Э
l l

θ ω

ω ω θ θ
θ ω

τ

µµ δ µ δ δ δ δ
µ λ

µ µ ω
µ λ

= +

+ + + ∆ − +
+

+ − ∆ − − + ∆
+

 (33) 

Let’s make the following remark. In expressions (25), (26), we introduce a scale 
normalizing parameter when it’s determined the “cohesive” field vector iu . We can assume 
without loss of generality that 2 .l lω= In the general case, both the system of equilibrium 
equations (24), the general solution of these equations and the expression for the stresses (33), 
are written in terms of “classical” displacements and “cohesive” displacements are determined 
only through two scale parameters 2lω  и 2.lθ  The spherical tensor of deformations ,k kR  and 
pseudo-vector of rotations ,m n mnrR Э  (see equations (29) and (30)) are also written explicitly 
through “classical” displacements and “cohesive” displacements, and, therefore, depend only 
on 2lω  and 2lθ . Therefore, if kinematic boundary conditions hold (see (12)), then the problem, as 
a whole, is two-parametric. In the general case of static boundary conditions, only the static 
factor with 2 , 5(4 )a i ia af C R C R= + ∆   depends on the third parameter 2C . Consequently, the 
boundary value problem, as a whole, becomes three-parametric only in the case of static 
nonclassical boundary conditions (12). 

Further, if we assume that 
2

2 2
2

(2 ) ,l l l
l
θ

ω
ω

µ λ
µ
+

= = , then we come to a one-parameter 

model for which the expansion [14-16, 20,22] takes place: .i i iR U u= −   
Finally, we note that the fulfillment of the hypothesis of "classicality", in which the static 

boundary conditions on the tensor of “classical” stresses have the standard classical form (16), 
generally leads to the possibility of constructing approximate solutions of a wide class of 
applied problems with the decrease of order of boundary value problems. 

Suppose that there are boundary value problems containing the static boundary condition 
(16) as one of the boundary conditions on the body surface. We will assume at the first step of 
constructing an approximate solution, that for the tensor of stresses ijτ  the defining relation can 
be approximately written in the form ,ij ijmn m nC Uτ = . Then the displacement vector iU  can be 
found from the solution of the first classical boundary-value problem (a problem with static 
boundary conditions). At the final step, the solution of the boundary value problem for equation 
(22) is constructed 

2 2 2
,{(...) (...) ( )(...) }jk jk jk k jl l l R Uω θ ωδ δ− ∆ − − = , 

with boundary conditions defined by the variational equality 

On one class of applied gradient models with simplified boundary problems 361



1 2 , 2 5 2 , 5{[4( ) (4 ) ] 2(4 ) ( )} 0m ma a a i ia a k j kjaC C R C C R n C R C R n Э dFδθ δ ω+ + + ∆ − + ∆ =∫∫  
Then the field of “cohesive” displacements from equality (25) can be explicitly 

determined. After that, we can redefine the stresses in formula (33), assuming that the field of 
“cohesive” displacements is known, and repeat the procedure for constructing the solution, 
which reduces to a sequence of solving two boundary value problems of second and not fourth 
order. It is not difficult to see that the algorithm proposed above corresponds to the procedure 
for constructing a solution using the asymptotic expansion of the solution for a small parameter 

2 2l lω=  and resembles the procedure for the method of elastic solutions. In this case, the 
equilibrium equations (15) and static boundary conditions (16) are satisfied exactly at each step, 
and the defining relations are considered as approximate, which is completely permissible. 
 
4. Applied “vector” gradient models 
For applied problems, the simplest gradient models that contain two or even one additional 
parameter are of interest, comparing with the classical theory of elasticity. Let's consider some 
variants of such correct “vector” gradient models. 

Suppose that in (10) 0С = . In the future, we will use the same transformations for model 
analysis as we used in the section 3. The variational equation of the applied gradient two-
parameter model in this case has the form: 

2
, 5 2 ,

5

2
, 5 , 2 , 2 ,

5

2
2 ,

5

2 2
5 , , , ,

5 5

{ 4 (1 ) }

{ [ (1 2 )

2 (1 ) ] }

{ ( 2 ) [ ( )]} 0.

V
ijmn m nj i j ji i i

F
i ijmn m n i j j i k k ij

m mij j i

a m ma a j j a j j k k a

CL C R C R C R P R dV
C

CP C R C R C R C R
C

CC R n R dF
C

C CC R R R n n R n R dF
C C

δ δ

δ

δ

δ

= − ∆∆ − + ∆ + +

+ − − ∆ − ∆ − + ∆ −

− + +

+ − ∆ + + + =

∫∫∫

∫∫

∫∫





 (34) 

For the model (34), the “classical” equilibrium equations and the “classical” static 
boundary conditions (with variation of displacements iRδ in (34)) have a clearly classical form: 

, 0V
ij j iPτ + = ,  ( ) 0,F

i ij j iP n R dFτ δ− =∫∫  

where ijτ is the tensor of “classical” stresses: 

2 2
, 5 , 2 , 2 , 2 ,

5 5

(1 2 ) 2 (1 ) .ij ijmn m n i j j i k k ij m mij
C CC R C R C R C R C R
C C

τ δ= − ∆ − ∆ − + ∆ − +  (35) 

The stresses (35), in contrast to (14), can be made paired, requiring in addition: 2 5 .C C=  
The nonclassical boundary conditions in (34) decompose into three pairs of alternative 

nonclassical boundary conditions: 
2 2

5 , , , ,
5 5

{ ( 2 ) [ ( )]} 0.a m ma a j j a j j k k a
C CC R R R n n R n R dF
C C

δ− ∆ + + + =∫∫  (36) 

The “vector” (three-parameter) theory (12), (17) differs from the theory of the “cohesive”  
field (two-parametric) model (34), (36) in that the boundary conditions contain all three 
nonclassical parameters. 

For the model under consideration, the operator of the equilibrium equation is represented 
as the product of a classical equilibrium operator and an additional, nonclassical Helmholtz 
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operator if the scale parameters 2 2,l lθ ω  in (24) are related to nonclassical modules by the 
following relations: 

2
5

2
2

.
2 (2 )

C l

C l l l
ω

ω θ ω

µ

µ µ λ µ

 =


= + −
 (38) 

The “classical” displacement field, the field of “cohesive” displacements in this model, 
is also determined by equations (22) and (25), and the general solution is represented by the 
relation (32). 

Let us give one more particular “vector” gradient model, which is a further simplification 
of the general vector model and is already a one-parameter gradient model. We assume in (11), 
(14) that 2 2

5 20, , 2 ( )С C l C lµ µ λ= = = + . Then the density of the gradient part of the 
potential energy can be represented in a simpler and more compact form: 

2
, , , , , ,

(2 ) (2 )[( ) ][( ) ].ijkmnl i jk m nl a i ia i ia a i ia j jaC R R l R R R R R Rµ λ µ λµ
µ µ
+ +

= ∆ − + ∆ − +  (37) 

Here it is taken into account that 
2 ( ) ( )[( ) ( )][( ) ( )].

2 2ijkmnl jk ia ij ka ik ja nl ma mn la ml naC l µ λ µ λµ δ δ δ δ δ δ δ δ δ δ δ δ
µ µ
+ +

= + + + +  

For this particular model (37), the variational equation defining the mathematical model 
(solving the equation and the boundary conditions) has the form: 

,

2
, , , ,

{ } { ( )}

( )[ ( ) ] [ ( )] 0,
2

V F F
ij j i i i i ij j i

a m ma a k j j ak k a k

L

P R dV P P n R dF

l R R R R R n dF

δ

τ δ τ δ

µ λµ µ λ δ δ
µ

=

= + + − − +

+
− ∆ + + + + =

∫∫∫ ∫∫

∫∫





 (38) 

where ijτ  are the “classical” stresses: 

2
, , ,

, ,

( )[
2

(3 ) ( )( ) (2 ) ].
2 2

ij ijmn m n i j j i

m mij k k ij

C R l R R

R R

µ λτ µ

µ λ µ λµ λ µ λ δ
µ µ

+
= − ∆ + ∆ +

+ +
+ + + + ∆

 

If we assume 2 2 2 2(2 ) / ,l l l lθ ωµ λ µ= + =  then for the one-parameter model (38) under 
consideration, the operator of the equilibrium equation is represented as the product of the Lame 
operator and the generalized Helmholtz operator constructed on the base of the Lame operator 
(see also [20]): 

2
,[ (...)]{(...) ( / ) (...) } 0,V

ij jk ij jk k iL l L R Pδ µ− + =  (39) 
where (...)ijL  is the Lame operator, ,(...) [ (...) ( )(...) ]ij ij ijL δ µ λ= ∆ + + . 

The “classical” displacement field and the field of “cohesive” displacements are 
determined, respectively, by the equalities: 

2
,[ ( ) ] /j j j k kjU R R R lµ µ λ µ= − ∆ + + ,   2( / )j jk ku l L Rµ= −  (40) 

and are the solutions of equations: 
,

2

[ (...) ( )(...) ] 0

( / ) 0

V
ij ij j i

V
ij j i i

U P

L u l u P

µ δ µ λ

µ

∆ + + + =

− + =
 (41) 

The general solution is represented as a decomposition: .i i iR U u= −  
Note that the one-parameter gradient model for which the equalities (39) - (41) are 

satisfied was widely used in [19, 20, 22] to solve applied problems in the mechanics of 
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composites with micro/nano-dimension inclusions and was called the applied model of the 
interphase layer. 

 
5. On one generalization of the Aifantis’s GradEla model 
Finally, we consider an even more particular gradient model, which belongs to the class of 
vector models. 

We suppose that 2
1 2 50, 0,C C C lµ= = = . Then the relation (11), (14) gives the following 

representation for the tensor of gradient modules 2 ( )( )ijkmnl jk ia nl maC lµ δ δ δ δ= , and the gradient 
part of the potential energy has the form: 

2
, ,ijkmnl i jk m nl a aC R R l R Rµ= ∆ ∆ . (42) 

The variational equation of the vector gradient model under consideration looks like: 
, , , ,

2 2
, , ,

[ ]

{[ ( ) ] ( )} 0

ijmn m n i j ijkmnl m nl i jk

F
i ijmn m n i j j i a a k k

L A C R R C R R dV

P C R l R n R l R R n dF

δ δ δ δ

µ δ µ δ

= − + =

= − − ∆ − ∆ =

∫∫∫
∫∫

 (43) 

It follows from the variational equality (43) that in the boundary-value problem the 
“classical” static condition for the “classical” stress ijτ  is precisely distinguished, and three 
pairs of alternative nonclassical boundary conditions are given by the variational equality: 

2
,( ) 0.a a k kl R R n dFµ δ∆ =∫∫   

In this case, the “classical” stress has the form   
2

, , ,ij ijmn m n i jC R l Rτ µ= − ∆  (44) 
and, in its structure, almost exactly coincides with the expression for the total stresses of the 
GradEla model of Aifrantis. 

It is easy to verify that the equilibrium equation for a given vector model exactly coincides 
with the equilibrium equation of the GradEla model, and the operator of the equilibrium 
equation is represented as the product of the Lame operator and the Helmholtz operator 

2
,{(...) (...)}[ (...) ( )(...) ] 0.V

ik ik k il R Pµ δ µ λ− ∆ ∆ + + + =  (45) 
The “classical” displacement field jU  and the "cohesive" displacement field ju  are 

determined by the equations: 
2

j j jU R l R= − ∆ ,   ,[ (...) ( )(...) ] 0V
ij ij j iU Pµ δ µ λ∆ + + + =  (46) 

,[ (...) (...) ( ) / ]i ik ik ku Rδ µ λ µ= − ∆ + + , 2 0V
i i il u u Pµ µ∆ − + = , (47) 

which also coincide exactly with the corresponding equations of the Aifantis GradEla model 
[36]. 

Note that although the gradient model determined by the relations (42) - (47) resembles 
the gradient model of Aifantis (GRADELA) in many ways, does not coincide with it. The model 
presented above is non-symmetric – the “classical” stresses are non-symmetric. In the Aifantis 
model, the gradient part of the potential energy is written in the form 2

, ,ij k ij klµ ε ε and differs 
from the expression (42), the gradient component of the defining relation for symmetric total 
stresses is written through Laplacian of the deformation ,i jε∆ , in contrast to expression (44). 

The model considered in the article belongs to the class of vector gradient correct models. 
For it, the static boundary condition, written only for “classical” stresses, is precisely 
distinguished. In general, this leads to simplifying the construction of solutions of applied 
problems. The GradEla model of Aifantis does not possess this quality. It does not belong to 
the class of vector gradient correct models.  
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The model defined by (42) - (47) we will call the generalized Aifantis model. This 
generalization allows us to transfer the Aifantis model to a class of correct vector models for 
which the classical boundary. 

 
6. On decomposition of boundary value problems 
Let us return to the vector gradient models and briefly examine the possibility of substantially 
simplifying the solutions of boundary value problems for them using decomposition of the 
general boundary value problem of the fourth order into a sequence of independently solvable 
boundary value problems of the second order. We assume that the conditions that lead to static 
boundary conditions of the classical form are satisfied: 

.ijkmnl akij almnC l lµ=  (48) 
Then the following statement holds: The gradient part of the potential energy density for 

the model in which the gradient modules obey conditions (48) is representable as the potential 
energy density of vector field. Really, taking into account (48) we obtain: 

, , , , , ,( )( ).ijkmnl i jk m nl akij almn i jk m nl akij i jk almn m nlC R R l l R R l R l Rµ µ= =  (49) 
The expression (49) is determined by the convolution of the following vectors 

,i akij i jkl Rε = . Consequently, for the gradient models under consideration, the variational 
equation, taking into account (48), (49) takes the form: 

, , ,

, , ,

[( ) ]

{[ ( ) ] ( )} 0.

V
ijmn m n a k akij j i i

F
i ijmn m n a k akij j i a akij k i j

L C R l P R dV

P C R l n R l n R dF

δ µε δ

µε δ µε δ

= + + +

+ − + − =

∫∫∫
∫∫

 (50) 

We can define the second rank tensor in (50) as the tensor of conditional “classical” 
stresses: 

, ,( ).ij ijmn m n a k akijC R lσ µε= +  (51) 
It is easy to see that the stresses ijσ  (51) satisfy both the equilibrium equations and the 

classical static conditions: 
,

,

( )

[( ) ( )] 0.

V
ij j i i

F
i ij j i a akij k i j

L P R dV

P n R l n R dF

δ σ δ

σ δ µε δ

= + +

+ − − =

∫∫∫
∫∫

 (52) 

The variational equation (52) indicates that nonclassical conditions are determined by 
three pairs of alternative boundary conditions which do not change the classical boundary 
conditions 0F

i ij jP nσ− = . 

Using the classical modulus of elasticity ( )ijmn ij mn im jn in jmC λδ δ µ δ δ δ δ= + + , let’s 
postulate the following relations: 

( )ijmn ijmn im jn in jm ij mn
ll C l λδ δ δ δ δ δ
µ µ

= = + + ,   ijmn mnijl l=  (53) 

Therefore, taking into account (49) we find that the following equality must hold: 
2

ijkmnl akij almn
lC C C
µ

= ,     ( )almn al mn am ln an lmC λδ δ µ δ δ δ δ= + + . 

In this case, the relation (51) takes the form: 
, , ,( ) ( )ij ijmn m n a k akij ijmn m m nC R l C R lσ µε ε= + = + . (54) 

We note, however, that the introduction of hypothesis (53) leads to a loss of symmetry 
for the “classical” stresses (54). 

At last, “classical” displacements iU  can be found (see eq. (53)): 
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2
, ,

2
,

( )

[ ( ) ] / .

i i i i ilmn m nl i im ln in lm il mn m nl

i i k ki

U R l R l l R R l R

R R R l

λε δ δ δ δ δ δ
µ

µ µ λ µ

= + = + ⋅ = + + + =

= + ∆ + +
 (55) 

“Cohesive” displacements iu  are defined through the difference between “classical” and 
total displacements [20, 22]: 

2

,[ ( ) ].i i k ki
lu R Rµ µ λ
µ

= ∆ + +  (56) 

Then general solution for the considered variant of the “vector” gradient model has the 
form: 

i i iR U u= −  (57) 
Note, that the gradient model defined by equations (50)-(57) is unique one parametrical 

model which allow to simplify set of boundary volume problems using the decompositions of 
the initial problems of fourth order to the sequence of two problems of second order.    

As a result, for the “vector” gradient model, the first fundamental problem splits into two, 
the classical boundary value problem: 

,

,

0
,

( ) ( ) 0

V
ijmn m nj i

V
i ijmn j m n i i

С U P

P С n U U u dFδ

 + =


− − = ∫∫
 (58) 

and the auxiliary boundary value problem: 
2

,

,

( / )
.

( ) ( ) 0
ijmn m nj i i

i i ijmn j m n

l С R R U

R U C n R dF

µ

δ

 − = −


− = ∫∫
 

The decomposition of the general solution into a superposition of “classical” one and 
“cohesive” one leads to the fact that the boundary value problems of gradient theories, in some 
cases, can be represented as a sequence of solutions of two boundary value problems: classical, 
with respect to the vector of “classical” displacements iU  and the boundary value problem with 
respect to the vector of complete displacements iR . The non-classical auxiliary to (58) the 
boundary value problem can be reformulated, in accordance with (57) with respect to 
“cohesive” displacements iu : 

2
,

, ,

( / ) 0

( ) 0.

V
ijmn m nj i i

i ijmn j m n m n

С u l u P

u C n U u dF

µ

δ

 − + =


− =∫∫
  (59) 

Consequently, for the first fundamental problem, the boundary value problems always 
disintegrate into “classical” and “cohesive” displacements for the “vector” gradient model 
under consideration. 

 
7. Analysis and decompositions of the boundary value problems   
Formally, the boundary value problems of the “vector” gradient model, in the general case, are 
coupled problems (58), (59): 

2
, ,

, , ,

0 ( / ) 0
.

( ) ( ) 0 ( ( )) 0

V V
ijmn m nj i ijmn m nj i i

V
i ijmn j m n i i i ijmn j m n m n

С U P С u l u P

P С n U U u dF u C n U u dF

µ

δ δ

 + = − + = 
 

− − = − =  ∫∫ ∫∫ 

 (60) 

For definiteness, we will assume that in the surface integral the multiplier associated with 
variation determines as the “static factors” in the boundary conditions, and the expression under 
the variation determines as “kinematic factors”. Let us consider four basic formulations of 
boundary value problems for statements (60). 
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1. For “classical” and “cohesive” displacements, it is required to perform static boundary 
conditions: 

,( ) 0,
0.

V
i ijmn j m n

i

P С n U
u

− =

=
 (61) 

In this case, we can see that the boundary value problems (60), (61) with respect to vectors 
of “classical” iU  and “cohesive” iu  displacements are separated by their construction. 

2. For “classical” displacements, the static boundary conditions are satisfied, and for 
“cohesive” displacements, are performed the kinematic boundary conditions: 

,

, ,

( ) 0,
( ) 0.

V
i ijmn j m n

ijmn j m n ijmn j m n

P С n U
C n U C n uδ

− =

− =
        (62) 

Varying ,( ) 0V
i ijmn j m nP С n U− =  and adding up with , ,( ) 0ijmn j m n ijmn j m nC n U C n uδ − = , we 

obtain using (62):  
,

,

( ) 0,

( ) 0.

V
i ijmn j m n

V
i ijmn j m n

P С n U

P C n uδ

− =

− =
 (63) 

As a result we again receive the full decomposition of the boundary value problems 
(60),(63) for the vectors of “classical” iU  and “cohesive”  iu displacements. 

3. For “classical” displacements, kinematic boundary conditions are performed, and for 
“cohesive” displacements, the “static” boundary conditions are satisfied:  

( ) 0,
0.
i i

i

U u
u
δ − =

=
 (64) 

Varying 0iu =  and adding up with ( ) 0i iU uδ − = , we obtain from (64) the following 
boundary conditions:  

0,
0.

i

i

U
u
δ =
=

 (65) 

Conditions (65) lead to fully decomposition of the boundary value problems for the 
vectors of “classical” iU  and “cohesive” iu displacements. 

4. The kinematic boundary conditions are satisfied for the “classical” displacements and 
for “cohesive” displacements: 

, ,

( ) 0,
( ( )) 0.

i i

ijmn j m n m n

U u
C n U u

δ
δ

− =
− =

         (66) 

The  boundary conditions (66) do not allow to  divide   boundary volume problems respect 
to vectors of “classical” iU  and “cohesive” iu  displacements. Indeed, since 

* ( )ijmn ijmp pn ijmp p nC C C n nδ= +  and *
,( ) 0ijmp pn i i nC U uδ δ − = , from the second condition (66) 

follows that , ,( ) 0i j j i j jU n u nδ − = . Thus, the boundary-value problem for the vectors of 
“classical” iU  and “cohesive” iu  displacements takes the form: 

, ,

( ) 0,
( ) 0.

i i

i j j i j j

U u
U n u n

δ
δ

− =

− =
 (67) 

Conditions (66) (and (67)) define the coupled boundary value problem respect to vectors of 
“classical” iU  and “cohesive” iu  displacements.  
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8. Conclusions 
It is shown that the traditional formulation of gradient theories of elasticity leads to the fact that 
classical static conditions on the surface of the body are not satisfied locally. A “vector” theory 
is formulated, it is correct and provides a classical view of static boundary conditions. 

Particular cases of vector gradient models are considered and it is shown that there exists 
a particular vector gradient model whose equilibrium equations coincide with the equations of 
the well-known applied GradEla model of Aifantis. Such a vector gradient model can be 
considered as a generalization of the Aifantis model. For it there is an exact decomposition of 
static boundary conditions to “classical” stresses (full stresses if we use Aifantis definition). 
Finally, it is shown that if we neglect the symmetry requirement for the gradient-module tensor 
with respect to the last indices in triples, then it is possible to indicate a unique gradient theory 
that admits the decomposition of boundary value problems of the fourth order into a sequence 
of two second-order boundary value problems when we solve a number of boundary value 
problems. 
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