Due to its high radiative stability and superior optoelectronic properties, such as wide direct band gap of ~3.4 eV and high exciton binding energy of ~60 meV, ZnO is considered for the fabrication of ultraviolet and visible light emitting and laser diodes, solar-blind photodetectors. Although proof-of-concept devices were already demonstrated, further progress in this area is slowed down by the difficulties of doping ZnO p-type. Here, we discuss problems associated with doping of ZnO, cover recent progress in this area, and discuss an alternative approach to increase p-type dopability via anion substitution, replacing oxygen with other group VI elements (S, Se, Te). We also propose that these anion-substituted alloys will be extremely promising for fabrication of photovoltaic devices, such as highly efficient thin film solar cells. |
full paper (pdf, 1440 Kb)