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Abstract

The dynamics of a light centrifuged sphere in a rotating inclined cylinder filled
with liquid under transversal vibrations is experimentally investigated. The sphere
and the cavity rotate at different angular velocities, and in the absence of vibration
the cavity velocity is always greater than the sphereвЂ™s one. This phenomenon was
called the vibrational hydrodynamic top [1].

The intensification of the lagging motion of a sphere and the excitation of the
outstripping differential rotation are possible under transversal vibrations. It occurs
in the resonant areas where the frequency of vibrations equals to the fundamental
frequency of the system. The resonant areas are determined by the ratio of the fre-
quency of vibrations to the angular velocity of the cavity rotation n ≡ Ωvib/Ωrot. The
position of the centrifuged sphere in the center of the cylinder is unstable [2]. In the
threshold of outstripping motion excitation the sphere is shifted from the center to
the one of the end-walls and is settled at definite distance from it. The position of the
sphere is determined by the dimensionless frequency of vibrations n and depends on
the intensity and structure of the averaged fluid flow.

In inclined rotating cylinder the axial component of the gravity force appears how-
ever a light sphere does not float to the end-wall but saves the quasi-stationary position
at a definite distance from it. It makes possible to create a vibration suspension of a
light sphere in a vertical rotating cavity under transversal vibrations. It is found that
in the wide range of angles of the cavity inclination the sphere position is determined
by dimensionless rotation rate.

1 Introduction

Rotating hydrodynamic systems cause a great interest because of their wide distribution
in nature. A wide range of natural frequencies provides the possibility to control such
systems using the vibrations [3]. For instance the action of transverse vibrations on the
free boundary of the centrifuged liquid [4] leads to the excitation of an azimuthal wave. A
similar resonance effects occur when the free flowing medium [5] or a light cylindrical body
[1] is in rotating system instead of a gas phase. In the last case the vibration leads to the
oscillation of the body and the emergence of its intensive differential rotation relative to
the cavity, called the vibrational hydrodynamic top. Description of the differential rotation
in the two-dimensional formulation is given in [1]. The presence of a rotating force field
in Р° rotating frame leads to the circular oscillations of the body. The arising inertial
azimuthal wave in the fluid causes the pulsating motion in the viscous boundary layer.
This leads to the excitation of an averaged torque, spinning up the body. The direction
of body rotation (outstripping or lagging) is determined by the direction of the azimuthal
wave. The existence of the areas of the lagging and outstripping rotation is natural for
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all centrifuged systems inhomogeneous in density. The resonance areas are defined by the
ratio of vibration frequency to the rotation speed n ≡ Ωvib/Ωrot. The outstripping rotation
of the body with respect to the cavity is excited if n > 1, the lagging one – n < 1.

If the top has a spherical shape [2] the vibrations results in excitation of its differential
rotation and positioning on the rotational axis. The positioning of bodies is an actual
problem, particularly under the microgravity conditions. The phenomenon of “acoustic
levitation” of liquid droplets in the gravity field [6, 7] could be an example. The levitation
is carried out by the acoustic pressure in the standing wave. In the microsystem an
oscillating electric field in the quadrupole traps is used for the positioning of electrically
charged particles [8].

The rotation of the cavity qualitative changes the law of motion and wrap of the
bodies. In the rotating fluid the emersion speed of a light body is much smaller than in
a non-rotating one [9, 10]. The additional drag force due to the formation of so-called
Taylor–Proudman column appears [11].

In this work we study the behavior of a light spherical body in an inclined rotating
cylinder filled with a fluid and subjected to vibration perpendicular to the rotation axis.
The sphere has the differential rotation with respect to the cavity due to the vibration.
The differential rotation also generates the Taylor–Proudman column. Unlike the classical
column with almost solid-body rotation, the column in the problem of the vibrational top
has a complex vortex internal structure [2]. We found that under these conditions the
body can take the suspended state even in the vertical cavity.

2 Experimental setup and techniques

In a cylindrical cavity of circular cross section 1 (fig. 1) the light spherical body 2 is
placed. The cavity filled with a liquid is set in a horizontal position on the table 3 of
an electrodynamic vibrator, providing the translational vibrations perpendicular to the
rotation axis. The length and the radius of the cavity are L = 72.0 mm and R = 26.0 mm
respectively, the radius of the sphere is r = 17.7 mm, its average density is ρs = 0.17 g/cm3.
The relative size of the sphere is 2r/L = 0.5. The working fluid is water.

A stepper motor 4 lead the cavity to the uniform rotation with frequency
frot = Ωrot/2π. The instability of the cavity rotation is less than 0.001 rps. The motor
rotation speed is controlled by a generator. The cavity rotation speed is such that the
sphere is centrifuged and rotates without touch of the side walls. The sphere angular ve-
locity fs = Ωs/2π is different from the cavity rotation speed. The stroboscopic light lamp
5 is used for illumination. The frequency of vibrations is fvib. The amplitude of vibration
bvib is calculated using the signal of accelerometer 6.

In the experiment the body position x = (x2 − x1)/(x2 + x1) with respect to the cavity
end walls (x1, x2 – the distance between the left and the right end walls of the cavity to the
closest poles of the sphere) and the relative angular velocity of the sphere ∆f = fs− frot are
measured. All experiments were conducted in the resonance areas where the frequency of
vibrations coincides with one of the natural frequencies of the sphere and the differential
rotation ∆f (outstripping or lagging) is large [2]. For the chosen problem the resonant
frequencies of outstripping and lagging rotation are n = 2.0 and n = 0.8.

The experiment was conducted as follows. In one case the angle of the cavity inclination
α is changing continuously at constant frequency of rotation and frequency and amplitude
of vibrations. The experiment is repeated for different values of fvib and bvib. In another
case at fixed frequency of vibration and angle О± the amplitude of vibration bvib is varied.

For the outstripping rotation the cavity speed and the vibration frequency are
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Figure 1: The scheme of the experimental setup

frot = 17.5 rps and fvib = 35 Hz. For the lagging rotation frot = 31.0 rps and fvib = 25 Hz.
The amplitude of the vibrations varies in the range bvib = 0.01 – 0.80 mm.

3 Experimental results

The rotation speed of the sphere in the laboratory frame is always less then the cavity
speed (∆f < 0) in case of rotation about a horizontal axis at the absence of vibrations.
The solid takes the quasistationary position at some distance from the cavity end walls.
The position depends on the dimensionless frequency ω = Ωrotr2/ν where ν is the kinematic
viscosity. The sphere dynamics under vibration depends on the parameter n. The area of
intense outstripping rotation (∆f > 0) is characterized by a significant shift of the sphere
out the cavity center (the horizontal case) [2]. The displacement can occur to any end.
In the lagging resonant rotation area the sphere position is at almost equal distance from
the ends, |x| < 0.2. Outside the resonance areas the sphere position coincides with the
non-vibration case.

For the small amplitudes of vibrations the sphere retains practically the same quasis-
tationary position (fig. 2a) with the cavity deviation from the horizon. With increasing
the cavity inclination the situation remains unchanged until a certain critical angle α∗, at
which the sphere in the threshold manner moves along the axis to the end wall, “floats”
(fig. 3a). With decrease of the inclination angle the separation from the upper wall occurs
with hysteresis at much lower value of α (fig. 3a, black symbols). The new quasistationary
position of the sphere is much closer to the upper end wall. The transition to the initial
state x takes place only after the return of the cavity in the horizontal position. The
sphere differential velocity changes simultaneously with the position (fig. 3b). Floating
and separation of the sphere from the top wall is accompanied by the threshold change in
the ∆f. In the range of inclination angle α = 20–400 the behavior of the sphere is unsteady.
The rotation speed ∆f (at α = const) is changing in time while the x is constant.

The increase of the vibration amplitude leads to the grow of the differential rotation
speed and the critical angle α∗. Under the intensive vibration the sphere could remain
in the quasiequilibrium position at some distance from the upper end wall of the cavity
even in the vertical cylinder (fig. 3c). Floating occurs only at low vibration amplitude bvib
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Figure 2: Photographs of the sphere quasistationary position at n = 0.8; (a), 0.29 (b),
0.70 (c) and 0.63 mm (d)
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Figure 3: The position of the sphere relative to the cavity ends (a, c) and the differential
rotation speed (b, d) as a function of the angle α for different vibration amplitudes at
n = 0.8; dark and empty symbols correspond to the results for increasing and decreasing
α; area of sphere unsteady rotation is indicated by lines connecting the minimum and
maximum values ∆f; the transitions from one quasisteady state to another are shown by
arrows
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Figure 4: The position of the body versus the dimensionless vibration acceleration (a) and
dimensionless sphere speed (b) at different α (n = 0.8); dark and light symbols correspond
to increase and decrease of bvib; solid arrows indicate the thresholds of the sphere float to
the upper end wall

(fig. 2d). Thus, the vibration allows the suspension the light sphere in the rotating vertical
cylindrical cavity with fluid.

4 Discussion of results

The intensity of the vibration is determined by the dimensionless parameter
Γvib = (bvibΩ2

vib)/(rΩ
2
rot) that characterizes the ratio of the vibrational acceleration to

the centrifugal one. The increase of Γvib leads to the growth of dimensionless velocity of
the differential rotation |∆Ω/Ωrot|. In the inclined cavity it also leads to a change in the
sphere position x (fig. 4a). The position x in the horizontal cavity at n = 0.8 practically
does not depend on Γvib (fig. 4a).

The coordinate x changes with Γvib nonmonotonically. For small α (< 450) with Γvib
growth the sphere shifts to the upper end of the cavity. The greater is cavity inclination
angle at definite Γvib, the larger is x. For large α (> 450) the dependence is opposite, the
coordinate x decreases with Γvib. All points for different values α fall down on a single
curve. In the vertical cavity (α = 900) the vibrational suspension of the sphere is possible
at Γvib > 0.024.

The dependence of the body position x on the dimensionless speed ∆Ω/Ωrot is shown in
fig. 4b. The axial component of the lift force acting on the sphere Fn = (ρL − ρs)Vsg sinα
grows with α. However the experimental points for different α are in agreement and
fall down on one curve. Thus, the position of the sphere is independent of the angle of
inclination, and is completely determined by the dimensionless differential rotation speed.
The body could get stable position at different distances from the end wall at the same
values of ∆Ω/Ωrot.
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5 Conclusion

The behavior of the light spherical body in the rotating inclined cylinder with fluid under
vibration perpendicular to the axis of rotation is experimentally investigated. It is found
that the vibration results in the intensive differential rotation of the sphere and quasis-
tationary positioning at definite distance from the end walls. With increase of the cavity
inclination angle the sphere “suspension” state remains up to some critical value α∗, which
grows with the vibration intensity. At Γvib > 0.024 the suspension of the light sphere in
the vertical cylindrical cavity is possible.
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