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Abstract

The two-dimensional problem of thin body motion in fluid parallel to the boundary
at a distance comparable with the length of the body was regarded. The fluid was
assumed occupying infinite semi-space, gravity was neglected as compared with fluid
inertia. The solution was obtained for a problem of plate motion in compressible
fluid at a definite depth under free surface, constant velocity and inclination angle.
The formation of final length cavity behind the body was taken into account. Vapor
pressure in the cavity is assumed to be less than the pressure on free surface. The
solution allows determining drag and lift forces. The relation between the body length
and the cavity length in the case of small depth or high compressibility was obtained.
It was determined that the forces increase when the pressure in the cavity decreases.
When the pressure in the cavity tends to the pressure on the free surface the length
of the cavity infinitely increases and forces tend to the values obtained in independent
solutions with infinite cavities. The increase of depth under free surface and decrease
of compressibility brings to decrease of cavity length.

1 Introduction

The problem of gliding over the surface of water of infinite and finite depth was regarded
within the frames of linear [1-4] and non-linear [5, 6] statements, and found its generalized
classical solution in [7]. High speed streaming flows accounting for fluid compressibility
were investigated in [8-10]. The problems regarded in [10] include both cases of positive and
negative angles of attack and describe underwater motion of a plate. The solutions relied
heavily on the fact that cavity behind the gliding body has infinite length. The problem
of final length cavity formation near a plate moving in incompressible fluid was solved
numerically in [11-13]. In the present paper the analytical solution allowing determine
drag and lift forces of a plate moving in compressible fluid near free surface with final
length cavity formation was obtained.

The current problem has many practical applications, such as determining resistance
and lift forces being the function of the depth in underwater motion of a bullet or shell.
The problem is relevant to surface or underwater high velocity gliding of thin wing, which
is often used to reduce resistance of the glider.

2 Mathematical statement of the problem

The two-dimensional problem of thin body motion in the presence of free surface is re-
garded. It is assumed that the wing is moving with constant velocity V0 in an ideal
compressible fluid near a free surface. In a motionless coordinate system adiabatic gas
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flow is described by the continuity and Euler equations. The angle |α±| � 1 and mass
forces are considered to be negligibly small. These assumptions make the flow field to be
potential. Boundary conditions should be satisfied on the free surface, on the body surface
contacting fluid and in the cavity. On the free surface and in the cavity constant pressure
is assumed, on the fluid-body contact streaming condition of the equality of normal veloc-
ity component. Behind the cavity fluid streams from both sides of the body merge thus
creating a uniform flow without any slipping one fluid against the other.

The coordinate system and flow scheme are shown in Figure 1. In movable coordinate
system x = x′+V0t, y = y′ connected with the wing the gas flow can be considered stable.

Figure 1: Thin body motion in fluid parallel to free surface with closed cavity formation.

Flow potential under the condition of steady-state flow satisfies the equation

V 2
0

∂2ϕ

∂x
= a2(

∂2ϕ

∂x
+
∂2ϕ

∂y
), (1)

and fluid pressure is determined

P − P0 = ρ0V0
∂ϕ

∂x
. (2)

Boundary conditions look as follows

y = 0,−∞ < x <∞ :
∂ϕ

∂x
= 0;

y = h+, 0 < x < L :
∂ϕ

∂y
= V0 sin θ;

y = h−, 0 < x < S; y = h+, L < x < S :
∂ϕ

∂x
= − ∆P

ρ0V0
; (3)

y = h±, L < x :
∂ϕ

∂x
= 0,

where V0 is the mean streaming velocity, ϕ(x, y, t) is the potential of the disturbed flow
induced by the relative motion of the body, P0, ρ0 are pressure and density in quiescent
fluid, ∆P = Ccav.min

ρ0V 2
0

2 , where Ccav.min is the minimal cavitation number, which is
determined by the thermo-physical properties of liquid, amount of solute gases, presence
of impurities, fluid temperature, etc.

Thus equation (1) with boundary conditions (3) present a closed form statement of the
problem.
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3 Problem solution

The solution will be developed in the form of a real part for the analytical function of a
complex variable ϕ(x, y) = ReΦ(z), z = x + iy. Actually, it is necessary to develop first
derivative of the analytical function, which could be denoted as T (z) = Φ

′
(z).

In case of the body moving near free surface the conformal mapping of the semi-plane
y > 0 with a cut y = π, x > 0 on the upper semi-plane Imw > 0 (Figure 2), which could
be performed with the function:

z = πi+ w − lnw − 1, Imw > 0, w = u+ iv

can be used to obtain a new boundary problem in the new plane for T (z(w)) function.
The development of the analytical function is reduced to Riemann - Hilbert problem, which
solution is non-unique.

Figure 2: Conformal mapping of the semi-plane y > 0 with a cut y = π, x > 0 on the
upper semi-plane.

The solution could be developed in the following form:

T (w) =

√
u− 1

u+
0 − 1

Q(w),

where Q(w) tends to zero at infinity. The solution is limited at infinity, and it is equal to
zero at the front edge.

The solution for ReQ(w) function is reduced to Dirichlet boundary problem, which has
a unique solution.

Thus it is necessary to develop a harmonic function ReQ(w) in the domain, which takes
the following continuous values at the boundary:

1 < u < u+
0 : ReQ(u) =

Mγ(x(u))

α

√
u+

0 − u
u− 1

;

u < 0, 0 < u < s−0 , s
+
0 < u <∞ : ReQ(u) = 0;

s−0 < u < 1 : ReQ(u) = −∆Pα

ρ0V0a

√
u+

0 − u
1− u ;

559



Proceedings of XLI International Summer School–Conference APM 2013

u+
0 < u < s+

0 : ReQ(u) = −∆Pα

ρ0V0a

√
u− u+

0

u− 1
,

where sin θ ≈ γ
α , α =

√
1−M2,M = V0

a and u±0 , s
±
0 are the roots of algebraic equations

l = u0 − lnu0 − 1, s = s0 − ln s0 − 1.

The solution for the Dirichlet problem for the semi-plane is given by Schwarz integral:

Q(w) =
1

πi

∫∞
−∞

ReQ(t)
dt

t− w + iC. (4)

In case of a plate the inclination angle is constant and (4) can be taken in elementary
functions:

Q(w) = −iγ0M

α
(

√
w − u+

0

w − 1
− 1)+

i
∆Pα(u+

0 + 1)

ρ0V0aπ(u+
0 − 1)

ln |
(1 +

√
s+0 −u

+
0

s+0 −1
)(1−

√
s−0 −u

+
0

s−0 −1
)

(1−
√

s+0 −u
+
0

s+0 −1
)(1 +

√
s−0 −u

+
0

s−0 −1
)

|+

+i
∆Pα(u+

0 + 1)

ρ0V0aπ(u+
0 − 1)

√
u+

0 − w
1− w ln |

(

√
u+

0 −w
1−w +

√
s−0 −u

+
0

s−0 −1
)(

√
u+

0 −w
1−w −

√
s+0 −u

+
0

s+0 −1
)

(

√
u+

0 −w
1−w −

√
s−0 −u

+
0

s−0 −1
)(

√
u+

0 −w
1−w +

√
s+0 −u

+
0

s+0 −1
)

|

The obtained solution makes it possible to develop forces affecting on the plate, because
pressure distribution in the contact zone is provided by the following expression:

p(x(u)) =
M

α
ReT (u), 1 < u < u+

0

p(x(u)) = [
M2γ0

α
+ i

M∆P (u+
0 + 1)

ρ0V0aπ(u+
0 − 1)

ln |
(1 +

√
s+0 −u

+
0

s+0 −1
)(1−

√
s−0 −u

+
0

s−0 −1
)

(1−
√

s+0 −u
+
0

s+0 −1
)(1 +

√
s−0 −u

+
0

s−0 −1
)

|]
√

u− 1

u+
0 − u

.

The length of the cavity is determined from the condition of equality of the sum of
upper and lower borders of the cavity vertical movements to vertical size of the cavity.

The obtained closed form solution is, however, difficult for being used directly in its
current form. In case of relatively small depth the following estimates are valid:

l =
πL

αh
→∞, s =

πS

αh
→∞,

u+
0 ≈

πL

αh
, s+

0 ≈
πS

αh
, s−0 ≈ e−

πS
αh ≈ 0.
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Then the relation between the lengths of the body and cavity takes the form:

L

S
=

2e−
2πL
αh

1 + e−
2πL
αh

( 2
α
−1)ρ0V 2

0 γ0π

∆Pα

√
πL
αh

. (5)

Using this relation the drag and lift forces in case of cavity formation may be estimated
for relatively small depth:

X =
ρ0a

2M2γ2
0πL

α3
+
γ0∆PπL2

2hα2
(
2πL

αh
+

+ ln (1 + e−
2πL
αh

( 2
α − 1)ρ0V

2
0 γ0π

∆Pα

√
πL

αh
)) +

M2γ2
0∆PL

α3
, (6)

Y = −ρ0a
2M2γ0πL

α2
− ∆PπL2

2hα
(
2πL

αh
+

+ ln (1 + e−
2πL
αh

( 2
α − 1)ρ0V

2
0 γ0π

∆Pα

√
πL

αh
))− M2γ0∆PL

α2
.

Analysis of obtained results shows the behavior of the forces depending on the ratio of
body length, fluid layer thickness and pressure in the cavity. As it could be seen from the
general solution for resistance and lift forces (6) the forces increase on decreasing pressure in
the cavity, which is characterized by increasing ∆P in our problem statement. The limiting
values for the forces could be estimated assuming ∆P to be equal to its maximal allowable
value ∆P = P0 . On cavity pressure tending to the ambient pressure P0 (∆P → 0) the
values of forces coincide exactly with that obtained in [8-10] for an infinite cavity:

X =
ρ0a

2M2γ2
0πL

α3
, Y = −ρ0a

2M2γ0πL

α2
.

Substituting in (5) pressure differential ∆P being the function of cavitation number
one obtains the following formula for the ratio of body and cavity length:

L

S
=

e−
2
z

1 + e−
2
z

2−α
α2

γ0π

Ccav.min

√
1
z

, z =

√
αh

πL
. (7)

It is seen from (7) that the ratio of body to cavity length depends on dimensionless depth z
and the cavitation number Ccav.min. Figure 3 illustrates the dependence of body to cavity
length ratio versus dimensionless depth for different values of parameter A = 2−α

α2
γ0π

Ccav.min
.

4 Conclusions

The analytical solution was obtained for a problem of body motion in compressible fluid
at a final depth with constant velocity and inclination angle. For the case of final length
cavity vapor pressure in it is less than the pressure on free surface. The solution allows
determining drag and lift forces in the limiting cases. The relation between the body length
and the cavity length in the case of small depth or low compressibility was obtained. The
forces increase when the pressure in the cavity decreases. When the pressure in the cavity
tends to pressure on the free surface the length of the cavity infinitely increase, and forces
tend to the values obtained in independent solutions with infinite cavities. The increase
of depth under free surface and decrease of compressibility brings to decrease of cavity
length.
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Figure 3: Body to cavity length ratio versus dimensionless depth for different values of
parameter A: A=5; 10; 100.
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