The technical program will consist of plenary, regular and poster sessions. Eight plenary speakers have been invited to present the state-of-the-art and the future development of such an emerging field as the control of oscillations. The 16 regular and 8 poster sessions have been arranged to cover all areas. They have all been scheduled to start at fixed times, permitting the participants to move from one session to another depending on their interest in particular paper.
10:00-13:00 | Opening Ceremony. Plenary Session 1 |
13:00-14:30 | Lunch |
14:30-17:10 | Regular Sessions A1, C1, D1, G |
17:10-17:30 | Coffee Break |
17:30-18:30 | Poster Session P1 |
10:00-13:00 | Plenary Session 2 |
13:00-14:30 | Lunch |
14:30-17:10 | Regular Sessions B1, D2, E1, F1 |
17:10-17:30 | Coffee Break |
17:30-18:30 | Poster Session P2 |
19:30-23:30 | Conference Banquet |
10:00-13:00 | Regular Sessions A2, B2, C2, E2 |
13:00-14:30 | Lunch |
14:30-16:50 | Regular Sessions B3, E3, F2, H |
16:50-17:10 | Coffee Break |
17:10-18:00 | Poster Session P3 |
18:00-19:00 | Closing Ceremony |
Section | Title | Chairman |
---|---|---|
A | Control of Oscillations | Prof. F.Chernousko |
B | Control of Chaos | Prof. R.Genesio |
C | Mathematical Methods of Nonlinear Analysis | Prof. G.Leonov |
D | Control Theory | Prof. V.Yakubovich |
E | Nonlinear Mechanics | Prof. D.Indeitsev |
F | Control Systems | Prof. A.Pervozvansky |
G | Synchronization | Prof. I.Blekhman |
H | Neurodynamics | Prof. M.Rabinovich |
A. LINDQUIST (Royal Inst. of Technology, Stockholm, Sweden) and V.A. YAKUBOVICH (St.Petersburg Univ., Russia) Universal Regulators for Optimal Damping and Tracking in Discrete-Time Systems with Harmonic External Disturbances.
A.A. KRASOVSKII (Zhukovsky Military Air Force Engineering Academy, Moscow,Russia) Control by Means of Bifurcations and the Asteroid Danger.
H. ABARBANEL (Univ. of California, San Diego), A. MEES (Univ. of Western Australia, Perth) and M. RABINOVICH (UCSD/INLS and IPFAN, Russian Academy of Sciences, N.Novgorod) Optimal Control of Nonlinear Systems in Time Delay State Space: Experiment and Theory.
G. CHEN (Univ. of Houston, USA) Control and Anti-Control of Chaos.
G. FEICHTINGER (Technical Univ. of Wien, Austria) Cyclical and Chaotic Solutions of Dynamic Optimization Models in Economics.
G.A. LEONOV (St.Petersburg Univ., Russia) and A.L. FRADKOV (IPME, Russian Academy of Sciences, St.Petersburg) Lyapunov Methods in Analysis and Control of Chaotic Systems.
M. HASLER (Ecole Polytechnique Federal, Lausanne, Switzerland) Current Problems for the Transmission of Information using a Chaotic Signal.
G. HU (Beijing Normal Univ., China) Chaos control and synchronization in spatiotemporal systems and their applications.
A.N.SHARKOVSKY, E.Yu.ROMANENKO, M.B.VEREIKINA, (Inst. of Mathematics, National Academy of Sciences of Ukraine, Kiev) Structural Turbulence in some Boundary-Value Problems.
M.OGORZALEK (Univ. of Mining and Metallurgy, Krakow, Poland) Implementation issues for Electronic Chaos Controllers.
H.NIJMEIJER (Univ.of Twente, The Netherlands) I.I.BLEKHMAN, A.L.FRADKOV, A.Yu.POGROMSKY (IPME, Russian Academy of Sciences, St.Petersburg) Synchronization and Controlled Synchronization of Dynamical Systems
F.CHERNOUSKO (Inst. of Mechanics, Russian Academy of Sciences, Moscow), Control of distributed elastic systems
M.RABINOVICH (UCSD/INLS and IPFAN, Russian Academy of Sciences, N.Novgorod) Control and Self-Control of Chaos in Neural Systems: Experimental and Theoretical Results.
F. ZIEGLER (Technical University of Wien), H.IRSHIK, M.KROMMER (Johannes Kepler University of Linz, Austria) Green's function method applied to vibrations of piezoelectric plates and shells.
1. M.F. Heertjes, M.J.G. van de Molengraft, A.de Kraker, D.H. van
Campen and
J.J. Kok (Eindhoven Univ. of Technology, Netherlands)
Manifold based control for a 1-DOF nonlinear beam system using feedback
linearization .
2. V. Gattulli (Universita' di L'Aquila, Italy), F. Vestroni
(Universita' di Roma La Sapienza , Italy)
Nonlinear feedback control strategies for an oscillating suspended cable
.
3. Y. Achkire, A. Preumont (Universite' Libre de Bruxelles, Belgium)
Flutter control of cable stayed bridges .
4. E. Kreuzer and O. Kust (Technical University Hamburg-Harburg,
Germany)
Dimension reduction and control of nonlinear distributed parameter systems
.
5. V.Yu. Rutkovsky, Suhanov V.M.(Inst. of Control Sciences Russ.
Acad. Sci.,
Russia), Dodds S. (University of East London, U.K.)
Characteristic improvements of flexible space structures as a control
object
6. Y.I. Somov (Irkutsk Computing Center Russ. Acad. of Sci.,
Russia)
Precision nonlinear gyromoment attitude control of the large-scale flexible
spacecrafts
7. D.V. Balandin (Research Inst. for Applied Mathematics and
Cybernetics, Russia)
Optimal Control of Oscillations in Distributed Systems with Uncertainty.
8. B. Cheshankov, B. Belnikolovsky, I. Jordanov (Technical University
of Sofia, Bulgaria)
Multicriteria optimization of a machine aggregate with single stage
spur gears .
9 I.M. Ananievski (Inst. for Problems in Mechanics RAS, Russia)
Bounded control of elastic linear mechanical system with unknown parameters
1. R. Gabasov, (Belorussian State Univ., Belorus), F.M. Kirillova,
(Inst. of Mathematics of Acad. of Sci., Belorus), E.A. Ruzhitskaya
(Gomel State Univ. of S.Scorina, Belorus)
Amortization of oscillating systems by optimal control methods
2. A.S. Kovaleva (Mechanical Engineering Research Inst. RAS,
Russia)
Near resonant control for resonant oscillatory systems .
3. G.A. Leonov, V.B. Smirnova (St. Petersburg State Univ., Russia)
Analysis of frequency-of-oscillations-controlled systems .
4. D.V. Ponomarenko, V.A. Teshev, A.I. Shepelyavyi, M.M. Shumafov
(St. Petersburg State Univ., Russia)
Stabilization of systems with hysteresis by periodic external force
5. S.F. Burdakov, M.I. Toupitsyn (St. Petersburg State Technical
Univ., Russia)
Robust stability and optimization of controlled oscillatory system
6. A.A. Pervozvanski, D. Ju. Skubov (St. Petersburg State Technical
Univ., Russia)
The asymptotic approach to the analysis and control of nonlinear oscillatory
systems on an example of the induction motor
7. A.T. Zaremba (Automated Analysis Corporation, USA), M.K.
Liubakka, R.M. Stuntz (Ford Motor Company, USA)
Vibration control based on dynamic compensation in an electric power
steering system
8. S.V. Gusev (St. Petersburg State Univ., Russia), W. Johnson,
J. Miller, A.M. Masrur (Ford Motor Company, USA)
Moment regulator for automotive engine oscillation damping
10. A.G. Alexandrov V.N. Chestnov (Moskow State Inst. of Steel
and Alloys, Russia)
Rejection of bounded harmonic external disturbances with unknown frequencies
and
amplitudes
1. M.Hasler (Swiss Federal Inst. of Technology, Switzerland)
Current problems for the transmission of information using a chaotic
signal
2. M. Ogorzalek (Univ. of Mining and Metallurgy, Poland)
Implementation Issues for electronic chaos controllers
3. S.O. Starkov, S.V. Yemetz (Inst. of Radioengineering and
Electronics RAS, Russia)
Digital communication systems using chaos
4. A.S. Dmitriev (Inst. of Radioengineering and Electronics
RAS, Russia)
Application of maps with stored information in CDMA communication systems
5. T. Ushio, N. Motonaka (Osaka Univ., Japan)
Controlling Chaos in a Manufacturing System with two machines and two
part-types
based on the Hogg-Huberman strategy
6. M. E. Brandt (Univ. of Texas Health Science Center, USA),
G. Chen (Univ. of Houston, USA)
Feedback control of pathological rhythms in some models of chaotic cardiac
activity
7. B.R. Andrievsky (St. Petersburg Technical Univ., Russia),
E.G. Dymkin, A.L.
Fradkov (Inst. of Problems of Mechanical Engineering Russ. Acad. of
sci., Russia)
Adaptive control of nonlinear business-cycle models
1. G.Hu (Beijing Normal Univ., China)
Chaos control and synchronization in spatiotemporal systems and their
applications .
2. M. Basso, R. Genesio, A. Tesi (Univ. de Frienze, Italy)
On stabilizing periodic orbits of a chaotic system via feedback control
3. H. Nakajima (Kinki Univ., Japan), Y. Ueda (Kyoto Univ.,
Japan)
On the stability of delayed feedback control of chaos
4. A.A.J. Lefeber and H.Nijmeijer (Univ. of Twente, Netherlands)
Bounded tracking controllers for the chaotic (forced) Duffing equation
5. X. Dong, G. Chen, L. Chen (Univ. of Houston, USA)
Controlling the uncertain Duffing system
6. Mario di Bernardo, David P. Stolen (Univ. of Bristol, UK)
A control Engineering approach to the control of chaos using the MCS
algorithm
7. C. Piccardi (Politecnico di Milano, Italy) and Luca L.
Ghezzi (Universita' C.Cattaneo and Politecnico di Milano, Italy)
Min-max control of uncertain chaotic systems
M. Fransaszek (National Inst. of Standards and Technology, USA),
M.R. Frey (Bucknell Univ., USA),
E. Simiu (National Inst. of Standards and Technology, USA)
Control of exits from a safe region: a stochastic Melnikov approach
2. E.M. Bollt (US Millitary Acad., USA), M. Dolnik (Brandeis
Univ., USA)
Learning the grammar of a chaotic dynamical system in a format suitable
for controlling dynamics and communications
3. A.K. Kozlov, G.V. Osipov, V.D. Shalfeev (Nizhny Novgorod
Univ., Russia)
Suppressing chaos in continuous systems by impulsive control
4. S. Lenci (Universita' di Ancona, Italy), G. Rega (Universita'
di Roma La Sapienza, Italy)
Theoretical analysis and numerical implementations of a chaos control
procedure in a
mechanical system
5. H. Lenz, R. Berstecher (Siemens AG, Germany)
Sliding-Mode control of chaotic pendulum: stabilization and targeting
of an instable periodic orbit
6. C. Batlle, E. Fossas, G. Olivar (Universitat Polite'cnica
de Catalunya, Spain)
Time delay stabilization of the buck convertor
7. E. Solak, O. Morgul, U. Ersoy (Bilkent Univ., Turkey)
Observer based control of chaos
1. A.N. Fedorova, M.G. Zeitlin (Institute of Problems of Mechanical
Engineering, RAS, St.-Petersburg; Russia)
Wavelet approach to mechanical problems. Sympletic group, sympletic
topology and sympletic scales of spaces
2. Chia-Chi Chu (Chang Gang College of Medicine and Technology,
Taiwan R.O.C)
Chaotic Motions of Simple Power System Models
3. V.N. Belych (Volga State Academy of Water Transportation;
Nizhny Novgorod; Russia)
Chaotic dynamics in multidimensional control systems .
4. V.P.Ponomarenko (Research Institute of applied Mathematics
and Cybernetics; Nizhny Novgorod; Russia)
Bifurcation phenomena and complex oscillations in nonlinear system with
phasecontrol .
5. K.Mitsubori, T. Saito (HOSEI University, Tokyo, Japan)
On Chaos Generators Mutually Connected by Pulse Signal .
6. A.C. Soudack (University of British Colombia, Vancouver;
Canada), S. Mozaffari (Newfoundland, Canada)
Chaos in a power transformer
7. A.P.Krishchenko (Bauman Moscow State Technical University;
Moscow; Russia)
Estimations of domains with limit cycles and chaos .
8. S.Volovodov, B.Lampe, E.Rozenvasser (Marine Technical University;
St.-Petersburg; Russia)
Application of method of integral equations for analysis of complex
periodic behaviors
in Chua's circuits
1. J.L.Moiola, D.W.Berns (Universidad Nacional del Sur, Bahia
Blanca, Argentina)
On the detection of period doubling bifurcation in nonlinear feedback
systems .
2. K. Aouchiche, P.-A. Bliman, M. Sorine (INRIA, France)
PI control of periodic oscillations of relay systems .
3. M.I.Feigin (Volga State Academy of Water Transportation, Nizhny
Novgorod, Russia) Investigations of bifurcation memory effects in behaviour
of non-linear controlled systems .
4. D.J. Pagano, E. Ponce, J. Aracil (Universidad de Sevilla, Sevilla,
Spain)
Bifurcation analysis of low-order nonlinear control systems with a delay
.
5. Jibin Li (Kunming University of Science and Technology, Kunming,
China) Xue-Zhong He (University of Sydney, Sydney, Australia) W.Ge
(Beijing Institute of Technology, Beijing, China)
Multiple periodic solutions of differential delay equations .
6. T. Kapitaniak (Technical University of Lodz; Lodz, Poland) J.Brindley
(University of Leeds; Leeds; U.K.)
Practical Stability of Chaotic attractors .
7. F.E. Udwadia, H.F. von Bremen (University of Southern California,
USA)
On the efficient computation of Lyapunov exponents.
8. V.Y. Arkov (Institute of Mechanics of Russian Academy of Science;
Ufa; Russia), G.G. Kulikov, T.V. Breikin (Ufa State Aviation Technical
University; Ufa; Russia) V.G. Patel (University of Sheffield; Sheffield,
U.K.) Chaotic Processes in Gas Turbine Engine: Markov Modelling Approach
9. S. Kaschenko (Yaroslavl State University; Yaroslavl, Russia),
A. Moegel, W. Schwarz (Dresden Technical University; Dresden, Germany)
Analysis of chaotic dynamics of first order equation with piecewise
constant delaying feedback
1. F.L. Chernousko (Inst. for Problems of Mechanics, RAS, Russia)
Bounded Distributed Controls in Elastic Systems
2. I.E. Zuber (Russia)
Stabilization of systems by similarity transformations and observers.
3. J.Wang, P.Mahalik, P.R.Moore (University of Leicester, U.K.)
Global stabilization for a class of uncertain nonlinear dynamic systems
with modified state-feedback control.
4. U. Kotta (Inst. of Cybernetics, Estonia)
The discrete-time nonlinear dynamic disturbance decoupling problem with
partially mesurable disturbances.
5. M.M. Kogan (Nizhni Novgorod State Univ., Russia).
A local approach to the inverse minimax control problem for discrete-time
systems.
6. P.M. Dower, M.R. James (Australian National Univ., Australia).
Power gain control for finite state machines.
7. G.V. Kronin (St-Petersburg University, Russia)
The Optimal Control Problem with p-degree Quality Functional.
1. V.M. Bukov, I.M. Maximenko (Zhukovskii Air Force Engineering
Acad., Russia).
An Isomorphizm Principle in the Systems Theory.
2. A.G. Butkovskiy (Inst. of Control Sciences RAS, Russia).
Some New Results in the Programme of Creating United Geometric Theory
of Control (UGTU) 3. N. Kunimatsu (Keio Univ., Japan).
Stabilization of a nonlinear tubular reactor dynamics with recycle.
4. V.A. Kamenetsky (Inst. of Control Sciences, RAS, Russia).
A constructive method for feedback stabilization of affine control systems
with input and state constraints.
5. L. Fridman (Samara State Architecture and Building Acad.,
Russia), Shustin E., Fridman E. (Tel-Aviv Univ., Israel).
Steady Models in the Relay Control Systems with Time Delay and Periodic
Disturbances.
6. A. Cheremenetsky (Bulgaria), V. Fomin (Russia), A.
Somova (Russia)
Stability and Robustness of Linear Abstract Control Systems.
7. I.G. Polushin (Inst. for Problems of Mechanical Engineering,
St.Petersburg, Russia)
Quasipassivity Based Control of Oscillation Systems with Disturbances
8. V.V. Baranov, V.I. Salyga (Russian Ac. of Science, Russia)
Models and methods of identification and adaptive stochastic control under uncertainty.
1. Z. Borislav, M. Vukobratovic (M. Pupin Inst., Yugoslavia)
Influence of the environment dynamics on combination resonances in vertical
motion of shaft vehicles
2. V.V. Beletsky, O.P. Salimova (Keldysh Inst. of Applied Mathematics
RAS, Russia)
Some aspects of Hill's problem as a dynamic billiard
3. M. Kopel, H. Dawid, G. Feichtinger (Univ. of Technology,
Austria)
Periodic and chaotic programs of intertemporal optimization models with
non-concave benefit functions
4. M.A. Aziz-Alaoui (Le Havre Univ., France), A.D. Fedorenko
(Inst. of Mathematics National Acad. of Sci. Ukraine, Ukraine), R. Lozi
(Univ. of Nice -Sophia Antipolis, France), A.N. Sharkovsky (Inst.
of Mathematics National Acad. of Sci. Ukraine, Ukraine)
Recovering trajectories of chaotic piecewise linear dynamical systems
5. M. A. Jordan, O. A. Orqueda (Univ. Nacional del Sur -Av.
Alem, Argentine)
Persistency of excitation and reachness in continuous-time piecewise
linear systems
6. B.T. Bakhshiyan (Inst. of Space Research RAS, Russia), O.A.
Bayuk (Inst. Of Astronomy RAS, Russia)
Optimization of the distribution of the observations of the oscillatory
system
7. Kulchitskii O.Yu., Kuznetsov D.F. (St. Petersburg State Technical
Univ., Russia)
Numerical simulation of nonlinear oscillatory systems under stochastic
perturbations
8. B.V. Kiselev, D.M. Volobuev (Inst. of Physics and St. Petersburg
Univ., Russia)
Equation of motion from a geophisical data series
1. F. Ziegler (Technical University of Vienna, Austria) H.
Irshik, M. Krommer (Johannes Kepler University of Linz, Austria)
Green's function method applied to vibrations of piezoelectric plates
and shells .
2.E.L. Aero (Inst. for Problems of Mechanical engineering RAS,
Russia)
Nonlinear dynamics of liquid crystals as visco- elastic media with controllable
properties
3. M. Pausch and F. Pfeiffer (Technische Univ. Munchen, Germany)
Simulation of a chain drive CVT as a Mechatronic System
4. I-Chung Weng (New Jersey Inst. of Technology, USA)
The dynamics stress intensity factor of a moving internal crack subjected
to obliquely shear waves
5. P.A. Zilin (St. Petersburg Technical Univ. and Institute
for Problems of Mechanical Engineering Russ. Acad. of Sci., Russia)
Dynamic forms of equilibrium of a bar compressed by a dead force
6. V. Fridman (Inst. for Problems of Mechanical Engineering
RAS, Russia and Technical Mechanics&Electronic Co., USA), D. Tibbetts,
I. Piraner (Cummins Engine Co., USA), N. Guseva, D. Kiryan (Inst.
of Problems of Mechanical Engineering RAS, Russia)
Nonlinear chaotic and periodical vibrations of the internal combustion
engine.
7. H.G. Bock, J.P. Schloeder (Interdisciplinary Center for Scientific
Computing, University of Heidelberg, Germany)
Parallel Boundary Value Problem Methods for Parameter Estimation in
Oscillatory Systems.
1. A.N. Sharkovsky, E.Yu. Romanenko, M.B. Vereikina, (Inst. of
Mathematics,
National Academy of Sciences of Ukraine, Ukraine)
Structural Turbulence in some Boundary-Value Problems .
2. V.S. Anishchenko, G.I. Strelkova (Saratov State Univ., Russia)
Attractors of dynamical systems
3. M. Basso, R. Genesio, A. Tesi, G. Torrini (Univ. di Firenze,
Italy)
On describing systems with periodic behaviour in terms of simple nonlinear
models
4. C.T. Possio (Univ of Milan, Italy), L.Pellegrini (Polythecnic
of Milan, Italy)
A kth order reaction: application of high codimension bifurcation theory
5. F. Peterka, S. Cipera (Inst. of Thermomechanics of Acad.
of Sci. of Czech
Republic, Czech Republic)
Transitions to chaos and basins of attractors at impact oscillator
6. E.M.A.M. Mendes (Fundacao de Ensino Superior de Sao Joao
Del Rei, Brazil)
Identification of a fluidized bed system: model structure and validation
issues
1. L. Hsu, G. Damm (Univ.Federal of Rio de Janeiro, Brasil),
R. Ortega, (SUPELEC,France) On stability notch filtering with
guaranteed stability properties.
2. E.S. Pyatnitskiy (Inst. of Control Sciences RAS, Russia)
Control of blackbox of mechanical nature.
3. K. Shimizu, H. Sugata, T. Hagino (Keio Univ., Japan) Global
optimization via multi-trajectory inertial system and chaos.
4. A. Besancon-Voda, P. Drazdil (ENSIEG, France)
Analysis of oscillations in systems with relay and friction.
5. G.V.Kostin (Institute for problems in Mechanics, Russia),
M.C.Steinbach, H.G.Bock, R.W.Longman
Modeling the dynamics of industrial robots with flexible electric drives.
6. D.Roy (Tata Steel, India), S.R.Deb (Jadavpur Univ.,
India)
Design and implementation of a telerobotic control system using kinesthetic
force feedback.
7. M.Hayase (Tokio Univ. of Agriculture &Technology, Japan)
Design of LQ-type nonlinear servo-systems.
8. R.Ryszard, J.Wrzuszczak (Tech. Univ.of Oplole), D.Imajev
(St.Petersburg
Electrotechnical Univ., Russia)
Adaptive control system with performance index feedback.
1. M.Hermle, W.Schiehlen (Univ. of Stuttgart, Germany) H.Zwart,
(Univ. of Twente, The Netherlands), R.Curtain (Univ. of Groningen,
The Netherlands)
Robust controllers for dead-time systems.
2. J.J.D.Delgado-Romero, R.S. Gonzalez-Garza, E.Hernandez-Morales
(Inst. Tecnologico de Morelia, Mich., Mexico), G.Delgado-Romero
(Centro de Capacitacion para el trabajo, Mich., Mexico),
Robust stability of linear time invariant systems represented by an
interval matrix.
3. O.A. Orqueda (Universidad Nacional del Sur, Bahia Blanca,
Argentine), M.A.Jordan (National Council for Science and Technology
(CONICET), Argentine),
Adaptive control of unstable systems based on Kautz expanded inverse
model.
4. N.A. Balonin, L.A.Mironovskiy (St.Petersburg Academy of Aerospace
Istrumentation, Russia)
Solving optimization problems by system adjoint operator simulation.
5. R.O. Omorov, A.O. Aidraliev (Kyrgyzpatent, Kyrgyzstan)
Synthesis of the robust interval control system.
6. C.M. Yuen, K.F. Tsang (City Univ.of Hong Kong),
Low voltage circuit design technology for voltage controlled oscillator.
7. L. Xiangdong, H. Wenhu (Harbin Univ.of Technology, China),
Controlling oscillations by noncritical eigenvalue assignment.