287. E. Babushkina, N. M. Bessonov, A. L. Korzhenevskii, R. Bausch, R. Schmitz (2013) Domain of oscillatory growth in directional solidification of dilute binary alloys Phys Rev. E 87, 042402 DOI: 10.1103/PhysRevE.87.042605 (link)

288. Ivanova E.A., Kolpakov Ya. E. (2013) Piezoeffect in polar materials using moment theory.š Journal of Applied Mechanics and Technical Physics. 54(6):989-1002. DOI:10.1134/S0021894413060138 (link)šš

289. Ivanova E.A., Kolpakov Ya.E. (2013) The use of moment theory to describe the piezoelectric effect in polar and non-polar materials // Generalized Continua as Models for Materials with Multi-scale Effects or Under Multi-field Actions. (Ed. H. Altenbach, S. Forest, A.M. Krivtsov). Berlin: Springer, P. 163-178. DOI: 10.1007/978-3-642-36394-8 (link)

290. Ivanova E.A., Vilchevskaya E.N. (2013)š Description of thermal and micro-structural processes in generalized continua: Zhilin’s method and its modifications. // Generalized Continua as Models for Materials with Multi-scale Effects or Under Multi-field Actions. (Ed. H. Altenbach, S. Forest, A.M. Krivtsov). Berlin: Springer, P. 179-197.DOI: 10.1007/978-3-642-36394-8 (link)

291. Zhilin P.A. Altenbach H., Ivanova E.A., Krivtsov A.M. (2013) Material strain tensor. // Generalized Continua as Models for Materials with Multi-scale Effects or Under Multi-field Actions. (Ed. H. Altenbach, S. Forest, A.M. Krivtsov). Berlin: Springer, P. 321-331. DOI: 10.1007/978-3-642-36394-8 (link)

292. Cardone G., Nazarov S.A., Ruotsalainen K. (2013) Bound states of a converging quantum waveguide. Mathematical Modelling and Numerical Analysis 47(1):305-315. DOI: 10.1051/m2an/2012033 (link)

293. Nazarov S.A., Taskinen J. (2013) Localization estimates for eigenfrequencies of waves trapped by a freely floating body in a channel. SIAM J. Math. Anal. 45(4):2523–2545. DOI: 10.1137/110856782 (link)

294. Specovius-Neugebauer M., Steigemann M., Nazarov S.A., Richard H.A. (2013) Energy release rates near the interface between two anisotropic solids. Engineering Fracture Mechanics 108:162-–169. DOI:10.1016/j.engfracmech.2013.01.020 (link)

295. Chiado Piat V., Nazarov S.A. Ruotsalainen K. (2013) Spectral gaps for water waves above a corrugated bottom. Proc. R. Soc. A. 469(2149):1–17. DOI: 10.1098/rspa.2012.0545 (link)

296. Nazarov, S.A. (2013) Asymptotics of an eigenvalue on the continuous spectrum of two quantum waveguides coupled through narrow windows Mathematical Notes 93(1-2):266-281. DOI:10.1134/S000143461301029X (link)

297. S. A. Nazarov (2013) The Mandelstam Energy Radiation Conditions and the Umov–Poynting Vector in Elastic Waveguides. Journal of Mathematical Sciences 195(5):676-729. DOI:10.1007/s10958-013-1612-2        (link)

298. S. A. Nazarov (2013) Elastic waves trapped by a semi-infinite orthotropic cylinder. Doklady Physics 58(11):491-495. DOI:10.1134/S1028335813110049       (link)

299. Nazarov, S.A., Taskinen, J., Videman, J.H. (2013) Asymptotic behavior of trapped modes in two-layer fluids Wave Motion 50(2):111-126.š DOI:10.1016/j.wavemoti.2012.07.003 (link)

300. Nazarov, S.A. (2013) Asymptotic behavior of spectral gaps in a regularly perturbed periodic waveguide Vestnik St. Petersburg University: Mathematics 46 (2) , pp. 89-97. DOI: 10.3103/S1063454113020052 (link)

301. Nazarov, S.A. (2013) Spectral properties of a thin layer with a doubly periodic family of thinning regionsš Theoretical and Mathematical Physics 174 (3) , pp. 343-359. DOI: 10.1007/s11232-013-0031-3 (link)

302. Nazarov, S.A. (2013) The localization for eigenfunctions of the dirichlet problem in thin polyhedra near the vertices Siberian Mathematical Journal 54 (3) , pp. 517-532. DOI: 10.1134/S0037446613030166 (link)

303. Nazarov, S.A. (2013) Gaps and eigenfrequencies in the spectrum of a periodic acoustic waveguideš Acoustical Physics 59 (3) , pp. 272-280. DOI: 10.1134/S1063771013010132 (link)

304. Nazarov, S.A. (2013)š Asymptotics of eigen-oscillations of a massive elastic body with a thin baffleš Izvestiya Mathematics 77 (1) , pp. 87-142. DOI: 10.1070/IM2013v077n01ABEH002630 (link)

305. Nazarov, S.A. (2013)š Scheme for interpretation of approximately computed eigenvalues embedded in a continuous spectrumš Computational Mathematics and Mathematical Physics 53 (6) , pp. 702-720. DOI: 10.1134/S0965542513060122 (link)

306. Nazarov, S.A. (2013)š Enforced stability of a simple eigenvalue in the continuous spectrum of a waveguideš Functional Analysis and its Applications 47 (3) , pp. 195-209. DOI: 10.1007/s10688-013-0026-8 (link)

307. Bakharev, F.L., Nazarov, S.A., Ruotsalainen, K.M. (2013) A gap in the spectrum of the Neumann-Laplacian on a periodic waveguidešš Applicable Analysis 92 (9) , pp. 1889-1915. DOI: 10.1080/00036811.2012.711819 (link)

308. Nazarov, S.A. (2013) Nonreflecting distortions of an isotropic strip clamped between rigid punchesš Computational Mathematics and Mathematical Physics 53 (10) , pp. 1512-1522. DOI: 10.1134/S0965542513100114 (link)

309. Bonnet-Ben Dhia, A.-S., Nazarov, S.A. (2013) Obstacles in acoustic waveguides becoming "invisible" at given frequenciesšš Acoustical Physics 59 (6) , pp. 633-639. DOI: 10.1134/S1063771013050047 (link)

310. Yu.V. Pavlov (2013) On the possibility of observation of the future for movement in the field of black holes of different types. General Relativity and Gravitation45(1):17-25. DOI:  10.1007/s10714-012-1453-1 (link)

311. Pozdnyakov A.O., Ginzburg B.M. (2013) Mass Spectrometric Studies of Polymer Friction. Journal of Macromolecular Science. Part B: Physics. 52(12): 1697-1706. DOI: 10.1080/00222348.2013.808903 (link)

312. Voznyakovskii A.P., Ginzburg B.M., Shepelevskii A.A. (2013) Molecular Organization in Ethylene-Perfluoroether Copolymers. Journal of Macromolecular Science. Part B: Physics. 52(12): 1818-1828. DOI: 10.1080/00222348.2013.808887 (link)

313. Ginzburg B.M., Tuichiev S., Tabarov S.H. (2013) Formation of Zero Density Regionsš During the Dissolving of C60 and C70. Journal of Macromolecular Science. Part B: Physics. 52(6): 773-787. DOI: 10.1080/00222348.2012.721654 (link)

314. Kandakov A.V., Ginzburg B.M. (2013) Construction of Myazawa's Equations for the Case of an Arbitrary Number of Junction Atoms. Journal of Macromolecular Science. Part B: Physics. 52(8):1056-1063. DOI: 10.1080/00222348.2012.746564 (link)

315. Pozdnyakov A.O. (2013) Thermal Decomposition Mass-Spectra of Polymer-Fullerene ó60 Systems. Journal of Macromolecular Science, Part B: Physicsš 52(12):1681-1696. DOI: 10.1080/00222348.2013.808895 (link)

316. S V Petinov and R V Guchinsky (2013) Fatigue assessment of ship superstructure at expansion joint.  Transactions of the Royal Institution of Naval Architects Part A: International Journal of Maritime Engineering RINA, 155:2013-2014. P.A201-A209. DOI:10.3940/rina.ijme.2013.a4.273   (link)

317. Freidin, A.B., Filippov, R.A., Hussainova, I., Vilchevskaya, E.N. (2012) Critical radius in the effect of strains formation toughening of zirconia doped ceramics and cermets. Key Engineering Materials, 527:68-73. DOI:10.4028/www.scientific.net/KEM.527.68 (link)

318. Babaev, A.A., Khokhlachev, P.P., Nikolaev, Yu.A., Terukov, E.I., Freidin, A.B., Filippov, R.A., Filippov, A.K., Manabaev, N.K (2012) Nanocomposite based on modified multiwalled carbon nanotubes: Fabrication by an oriented spinning process and electrical conductivity. Inorganic Materials, 48(10):997-1000. DOI: 10.1134/S0020168512090026 (link)

319. Babaev, A.A., Khokhlachev, P.P., Nickolaev, Y.A., Terukov, E.I., Freidin, A.B., Filippov, R.A., Fillipov, A.K., Manabaev, N.K. (2012) Features of the specific resistance of nanocomposite films fabricated from multiwall carbon tubes by means of a directed spinning chuck. Bulletin of the Russian Academy of Sciences: Physics 76(9):1051-1053. DOI:10.3103/S1062873812070052 (link)

320. Proskura, A.V., Freidin, A.B., Kolesnikova, A.L., Morozov, N.F., Romanov, A.E. (2012) Identification of defects in a solid body on the base of surface displacements. Materials Physics and Mechanics 15(1):9-25 (link)

321. Volkova D.O., Freidin A.B. (2012) The influence of external strains and material parameters on the kinetics of plane phase interface zones. Vestnik St.Petersburg University. Ser. 1. 2:99-108. (link) ššš—--š NEXT ——->