Современные проблемы численного моделирования
Темы лекций осенний семестр 2024
08.10.24
Обзорная лекция. Ознакомление с различными практическими задачами, в которых принимал участие: численное моделирование течения жидкостей, численное решение задач упругости – упруго-пластические течения, волновые процессы, моделирование процессов штамповки, численное моделирование в биологии и прочие.
15.10.24
Интегральные законы сохранения, как теоретическая основа для получения конечно-разностных схем. Примеры разностных схем для уравнений теплопроводности и упругости.
22.10.24
Явная разностная схема "на пальцах". Программная реализация, ручное построение нестационарного решения, сходящийся и расходящийся случаи.
29.10.24
Несколько вариантов неявных схем. Распараллеливание явной и неявной схем. Метод прогонки, циклическая прогонка, распараллеливание.
05.11.24
Зачем нужны граничные условия – их смысл, происхождение. Граничные условия I, II, IIIи IV рода. Можно ли обойтись без граничных условий.
12.11.24
Столкновение упругих тел. Контактный алгоритм. Метод штрафных функций, молекулярная динамика, и контактный алгоритм. Мягкий контактный алгоритм. Сравнение контактных алгоритмов.
19.11.24
Контактный алгоритм в стационарных задачах. Моделирование трещин. Как разрывать материал: исключение ячеек из счета, деление ячеек, проход трещины между ячейками, перестройка сетки.
27.11.24.
Метод прогонки и его распараллеливание. Метод пятиточечной прогонки.
02.12.24
Метода конечных разностей, метода конечных объемов, метода конечных элементов. Их иерархия, сопоставление плюсов и минусов. Распараллеливание метода прогонки для произвольного количества процессоров.
10.12.24
Консервативные и неконсервативные разностные схемы. Метод конечных объемов, как универсальный метод получения консервативных схем.
17.12.24
Формальные методы получения разностных схем. Сравнение Метода полиномов и метода конечных объемов. Получение схем высших порядков методом полиномов. Схема высокого порядка, как суперпозиция с весами простейших разностных схем.
24.12.24
Практическое занятие: применение метода конечных объемов для решения задачи упругости, от постановки, к разностной схеме, и, далее, к программной реализации.
14.01.25.
Разносные схемы в цилиндрических и сферических координатах. Особенности задания граничных условий на оси симметрии. Часто встречающиеся ошибки, приводящие к нарушению консервативности схемы.
21.01.25.
О конечно-разностной аппроксимации граничных условий в особых точках. Граничные условия четвертого рода, нелинейные граничные условия. Почему и сколько требуется граничных и начальных условий.
28.01.25.
Примеры нелинейных задач теплофизики и их численное решение. Задача про теплозащитные вспенивающиеся покрытия. Откуда взялась кривая стандартного пожара. Граничные условия с учетом лучистого теплового нагрева.
04.02.25.
Численное решение уравнения Шредингера в компонентной постановке, граничные и начальные условия экономичная разностная схема второго порядка точности.
11.02.25
Особенности численного решения уравнения Шредингера в комплексном виде, разносная аппроксимация со вторым порядком точности. Граничные условия на "бесконечности".
18.02.25
Разработка классов на языке программирования С++ для векторных и тензорных величин. Разработка соответствующих математических операций.
Пример применения для моделирования деформации упругого тела в пространствах разной размерности.
25.02.25
Численное моделирование колебаний балки. Аппроксимация граничных условий. Преимущество сведение уравнения четвертого порядка к системе двух уравнений второго порядка.
04.03.25
Уравнения газовой динамики и уравнения переноса, особенности аппроксимации для получения консервативной схемы.
11.03.25
Применение численных методов для решения задач, связанных с переносом частиц в рамках кинетической теории.
18.03.25
Особенности конечно-разностной аппроксимации конвективных слагаемых для уравнений газовой динамики. Аппроксимации первого и второго порядка точности. Противопоточная схема для аппроксимации конвективных слагаемых.
25.03.25
Решение задач газовой динамики - подход Эйлера.
01.04.25
Решение задач газовой динамики - подход Лагранжа в случае одномерного течения газа.
07.04.25.
Применение численных методов для решения нелинейной задачи на примере распространения волн в упругой нелинейной цепочке.
15.04.25
Моделирование трещин. Первый способ – удаление разрушенных ячеек.
Демонстрация примеров – резка металлической заготовки.
22.04.25
Моделирование трещин. Второй способ – движение трещины вдоль границ соседних ячеек. Демонстрация примера образования трещин при растрескивании материала вследствие высыхания.
29.04.25
Моделирование трещин. Третий способ – движение трещины по ячейкам сетки с последующим их разделением. Выбор направления деления. Сложности данного подхода и возможные способы их преодоления.
13.05.25
Моделирование трещин. Четвертый способ – бессеточный метод. Разбор примера высокоскоростного соударения упругих тел.
-
Современные проблемы численного моделирования занятие 2 Бессонов 2 занятие 15 10 (1).mp4
-
Современные проблемы численного моделирования занятия 3-4 Современные проблемы численного моделирования занятие 3-4.mp4
-
Современные проблемы численного моделирования занятие 5 Современные проблемы численного моделирования занятие 5.mp4
-
Современные проблемы численного моделирования занятие 6 Современные проблемы численного моделирования занятие 6.mp4
-
Современные проблемы численного моделирования занятие 7 Современные проблемы численного моделирования занятие 7.mp4
-
Современные проблемы численного моделирования занятие 8 Современные проблемы численного моделирования занятие 8.mp4
-
Современные проблемы численного моделирования занятие 9 Современные проблемы численного моделирования занятие 9.mp4
-
Современные проблемы численного моделирования занятие 10 Современные проблемы численного моделирования занятие 10.mp4
-
Современные проблемы численного моделирования занятие 11 Современные проблемы численного моделирования занятие 11.mp4
-
Современные проблемы численного моделирования занятие 12 Современные проблемы численного моделирования занятие 12.mp4
-
Современные проблемы численного моделирования занятие 13 Современные проблемы численного моделирования занятие 13.mp4
-
Современные проблемы численного моделирования занятие 14 Современные проблемы численного моделирования занятие 14.mp4
-
Современные проблемы численного моделирования занятие 15 Современные проблемы численного моделирования занятие 15.mp4
-
Современные проблемы численного моделирования занятие 16 Современные проблемы численного моделирования занятие 16.mp4
-
Современные проблемы численного моделирования занятие 17 Современные проблемы численного моделирования занятие 17.mp4
-
Современные проблемы численного моделирования занятие 18 Современные проблемы численного моделирования занятие 18.mp4
-
Современные проблемы численного моделирования занятие 19 Современные проблемы численного моделирования занятие 19.mp4
-
Современные проблемы численного моделирования занятие 20 Современные проблемы численного моделирования занятие 20.mp4
-
Современные проблемы численного моделирования занятие 21 Современные проблемы численного моделирования занятие 21.mp4
-
Современные проблемы численного моделирования занятие 22 Современные проблемы численного моделирования занятие 22.mp4
-
Современные проблемы численного моделирования занятие 23 Современные проблемы численного моделирования занятие 23.mp4
-
Современные проблемы численного моделирования занятие 24 Современные проблемы численного моделирования занятие 24.mp4
-
Современные проблемы численного моделирования занятие 25 Современные проблемы численного моделирования занятие 25.mp4
-
Современные проблемы численного моделирования занятие 26 Современные проблемы численного моделирования занятие 26.mp4
-
Современные проблемы численного моделирования занятие 27 Современные проблемы численного моделирования занятие 27.mp4
-
Современные проблемы численного моделирования занятие 28 Современные проблемы численного моделирования занятие 28.mp4
-
Современные проблемы численного моделирования занятие 29 Современные проблемы численного моделирования занятие 29.mp4