ipmash@ipme.ru | +7 (812) 321-47-78
пн-пт 10.00-17.00
Институт Проблем Машиноведения РАН ( ИПМаш РАН ) Институт Проблем Машиноведения РАН ( ИПМаш РАН )

Institute for Problems in Mechanical Engineering
of the Russian Academy of Sciences

Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences

List of major publications of laboratory for 2016-2022.

Direction 1 (head Prof. Freidin A.B.)

Monographies

  1. Freidin A.B. The Eshelby Problem. Textbook. Saint-Petersburg: POLYTECH-PRESS (Peter the Great St. Petersburg Polytechnic University). 2022. 150 p. DOI: 10.18720/SPBPU/2/id22-26
  2. Freidin A.B. Mechanics of Fracture. Eshelby Problem. Saint-Petersburg. Polytechnical University Press. 2010. 238 p. (In Russian) . DOI: 10.18720/SPBPU/2/si20-805

Selected papers 2016-2022 (Scopus, WoS)

  1. Kabanova P.K., Morozov A., Freidin A.B., Chudnovsky A. Numerical simulations of interface propagation in elastic solids with stress concentrators. In: Altenbach H., Bruno G., Eremeyev V.A. Gutkin M.Y., Müller W.H. (eds) Mechanics of Heterogeneous Materials. Advanced Structured Materials. Springer, Cham. Vol. 195. August 2023.
  2. Morozov, A., Freidin, A.B., Müller, W.H. (2023) On stress-affected propagation and stability of chemical reaction fronts in solids. International Journal of Engineering Science. 189:103876. DOI: 10.1016/j.ijengsci.2023.103876
  3. Freidin, A.B., Sharipova, L.L. (2023) On the Influence of Poiison’s Ratio on Phase Transformations Limiting Surfaces. In: Altenbach H., Berezovski A., dell'Isola F., Porubov A. (eds) Sixty Shades of Generalized Continua. Advanced Structured Materials. Springer, Cham. 170:235-256. DOI: 10.1007/978-3-031-26186-2_15
  4. Kabanova, P.K., Freidin, A.B. (2023) Numerical investigation of the evolution of new phase domains in an elastic solid. Computational Continuum Mechanics, 15(4), 466–479. DOI: 10.7242/1999-6691/2022.15.4.36
  5. Petrenko S., Freidin A.B., Charkaluk E. (2022) On chemical reaction planar fronts in an elastic-viscoelastic mechanical framework. Continuum Mechanics and Thermodynamics. 34(1):137-163. DOI: 10.1007/s00161-021-01051-x.
  6. Freidin, A.B. (2022) On Configurational Forces in the Mechanics of Phase and Chemical Transformations. Mechanics of Solids, 57(8):2020-2029. DOI: 10.3103/S0025654422080131
  7. Freidin A.B., Sharipova L.L., Cherkaev A.V. (2021) On equilibrium two-phase microstructures at plane strain Acta Mechanica 232:2005-2021. DOI: 10.1007/s00707-020-02905-2
  8. V.O. Shtegman, A.V. Morozov, A.B. Freidin, W.H. Muller (2021) On buckling induced by a chemical reaction. Materials Physics and Mechanics. 47;40-5 1. DOI: 10.18149/MPM.4712021_4
  9. Freidin A.B., Morozov A., Muller W.H. (2021) Propagation and stability of chemical reaction fronts in coupled problems of mechanochemistry. AIP Conference Proceeding 2371:020002. DOI: 10.1063/5.0059711
  10. V. Shtegman, A. Morozov, A. Freidin, and W.H. Müller (2021) Electromigration and Stress Affected Kinetics of IMC Growth of Binary Cu-Sn Couple AIP Conference Proceeding 2371:030007. DOI: 10.1063/5.0059609
  11. Y. Izmaylova, A. Freidin (2021) Modeling Surface Growth of Bone Tissue. AIP Conference Proceeding 2371:060002. DOI: 10.1063/5.0059595
  12. Freidin A.B., Vilchevskaya E.N. (2020) Chemical affinity tensor in coupled problems of mechanochemistry. In: Encyclopedia of Continuum Mechanics. Altenbach H., ¨Ochsner A. (eds), Springer, Berlin, Heidelberg. DOI:10.1007/978-3-662-55771-6_143
  13. Morozov A., Freidin A.B., Klinkov V.A., Semencha A. V., Muller W. H., Hauck T. (2020) Experimental and theoretical studies of Cu-Sn intermetallic phase growth during high-temperature storage of eutectic SnAg interconnects. Journal of Electronic Materials, 49, 7194-7210. DOI:10.1007/s11664-020-08433-y
  14. Shtegman V.O., Morozov A.V., Freidin A.B., Müller W.H. (2020) On stress-affected kinetics of intermetallic compound growth in the presence of electromigration. Вестник Пермского национального исследовательского политехнического университета. Механика. 2020, №4, DOI:10.15593/perm.mech/2020.4.01.
  15. Izmaylova Y.O., Freidin A.B. (2020) On a modeling stress-controlled surface growth of solids. PNRPU Mechanics Bulletin. 2020, №4
    DOI:10.15593/perm.mech/2020.4.09
  16. M. Poluektov, A.B. Freidin, L. Figiel. (2019) Micromechanical modelling of mechanochemical processes in heterogeneous materials. Modelling and Simulation in Materials Science and Engineering 27(7):084005. DOI:10.1088/1361-651X/ab3b3a
  17. Alexander B. Freidin, Leah L. Sharipova (2019) Two-phase equilibrium microstructures against optimal composite microstructures. Arch Appl Mech 89(3):561-580. DOI:10.1007/s00419-019-01510-7
  18. Morozov A.V., Freidin A.B., Muller W. (2019) Stability of chemical reaction fronts in the vicinity of a blocking state PNRPU Mechanics Bulletin 3:58-64. DOI:10.15593/perm.mech/2019.3.06
  19. Alexander B. Freidin and Victor V. Eremeyev (2019) On Kinetic Nature of Hysteresis Phenomena in Stress-Induced Phase Transformations. In Book: H. Altenbach et al (eds.) Dynamical Processes in Generalized Continua and Structures. Advanced Structured Materials 103. DOI:10.1007/978-3-030-11665-1_12.
  20. Aleksandr Morozov, Alexander Semencha, Alexander Freidin, Wolfgang Müller, Margarita Dronova (2019) Si Nanopowder Based Anode Material for the Lithium Ion Battery Cell. Key Engineering Materials. 822:230-238 DOI:10.4028/www.scientific.net/KEM.822.230
  21. A. Morozov, A. Freidin, W. H. Müller, A. Semencha and M. Tribunskiy (2019) Modeling temperature dependent chemical reaction of intermetallic compound growth. 2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Hannover, Germany 1-8. DOI:10.1109/EuroSimE.2019.8724531
  22. Poluektov, M., Freidin, A.B., Figiel, L. (2018) Modelling stress-affected chemical reactions in non-linear viscoelastic solids with application to lithiationreaction in spherical Si particles. Int. J. of Engineering Science, 128, 44-62. DOI:10.1016/j.ijengsci.2018.03.007
  23. Freidin A.B., Sharipova L.L. (2018) Forbidden strains and stresses in mechanochemistry of chemical reaction fronts. In: Altenbach H., Pouget J., Rousseau M., Collet B., Michelitsch T. (eds) Generalized Models and Non-classical Approaches in Complex Materials 1. Advanced Structured Materials, vol 89, Springer, Cham, pp 335–348. DOI:10.1007/978-3-319-72440-9_17
  24. Krivtsov M., Sokolov A. A., Muller W. H. Freidin A.B. (2018) One-Dimensional Heat Conduction and Entropy Production In: Advances in Mechanics of Microstructured Media and Structures. Advanced Structured Materials. Springer. V. 87. P. 197-214. DOI:10.1007/978-3-319-73694-5_12
  25. Morozov A., Khakalo S., Balobanov V., Freidin A.B., Muller W.H., and Niiranen J. (2018) Modeling Chemical Reaction Front Propagation by Using an Isogeometric Analysis Technische Mechanik. V. 38. № 1. P. 73 – 90. DOI:10.24352/UB.OVGU-2018-007
  26. Morozov A, Freidin A., Muller W.H., Hauck T., Schmadlak I. (2018) Modeling reaction front propagation of intermetallic compounds by using isogeometric analysis. 19th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Toulouse. 2018. P. 1-10. DOI:10.1109/EuroSimE.2018.8369860
  27. Shubin S.N., Akulichev A.G., Freidin A.B. (2017) Elastomer composites based on filler with negative coefficient of thermal expansion: experiments and numerical simulations of stress-strain behavior. Materials Physics and Mechanics. Т. 32. № 3. С. 278-287. Ref.
  28. Shubin, S.N.; Akulichev, A.G, Freidin A.B. (2017) Feasibility of using microencapsulated phase change materials as filler for improving low temperature performance of rubber sealing materials. Soft Matter. V. 13. № 42. P. 7760-7770. DOI:10.1039/C7SM01623A
  29. Freidin A.B.., Sharipova L.L., Morozov N.F. (2017) On locking strains in mechanochemistry of chemical reaction fronts. Chebyshevskii Sbornik. V.18. № 3. P. 469-481. DOI:10.22405/2226-8383-2017-18-3-469-481
  30. Freidin A.B., Morozov N.F., Petrenko S., Vilchevskaya E.N. (2016) Chemical reactions in spherically symmetric problems of mechanochemistry. Acta Mech. 227 (1) 43-56. DOI:10.1007/s00707-015-1423-2
  31. Antimonov M.A., Freidin A.B., Cherkaev A. (2016) Phase transformations surfaces and exact energy lower bounds. Int. J. of Engineering Science. V. 98. P. 153-182. DOI:10.1016/j.ijengsci.2015.10.004
  32. Shubin S.N., Freidin A.B., Akulichev A.G. (2016) Elastomer composites based on filler with negative thermal expansion coefficient in sealing application. Arch. Appl. Mech. V. 86. P. 351–360. DOI:10.1007/s00419-016-1120-1
  33. Freidin A.B., Korolev I.K., Aleshchenko S.P., Vilchevskaya E.N. (2016) Chemical affinity tensor and chemical reaction front propagation: theory and FE-simulations. Int J Fract. V. 202. № 2. P. 245-259. DOI:10.1007/s10704-016-0155-1
  34. Shubin S.N., Freidin A.B. (2016) A new algorithm for generating a random packing of ellipsoidal inclusions to construct composite microstructure. PNRPU Mechanics Bulletin V. 4. P. 317-337. DOI:10.15593/perm.mech/2016.4.19
  35. Freidin A.B., Kucher V.A. (2016) Solvability of the equivalent inclusion problem for an ellipsoidal inhomogeneity. Mathematics and Mechanics of Solids. V. 21. № 2. P. 255-262. DOI:10.1177/1081286515588636
  36. Podolskaya E. A. , Panchenko A. Yu. , Freidin A.B., Krivtsov A.M. Loss of ellipticity and structural transformations in planar simple crystal lattices. Acta Mech., 2016, 227(1):185-201. DOI:10.1007/s00707-015-1424-1

Direction 2 (head - Prof. Nazarov S.A.) - papers for 2019-2022 years.

1. Leugering G., Nazarov S.A., Taskinen J. Umov-Poynting-Mandelstam radiation conditions in periodic composite piezoelectric waveguides // Asymptotic Analysis. 2019. V. 111. P. 69–111.

2. Nazarov S.A. Asymptotics of eigenvalues and eigenfunctions of a thin square Dirichlet lattice with a curved ligament // Mat. Zametki. 2019. V. 105, № 4. P. 564–588 (English transl.: Math. Notes. 2019. V. 105, № 4. P. 77–94).

3. Kozlov V.A., Nazarov S.A. Modeling of a false aneurysm in an artery: equilibrium and development of a hematoma // Probl. mat. analiz. № 96. Novosibirsk, 2019. P. 67–82 (English transl.: Journal of Math. Sci., 2019. V. 239, № 3. P. 309–328).

4. Nazarov S.A., Slutskii A.S.The elastic polarization matrix for a junction of isotropic half-strips // Probl. mat. analiz. № 96. Novosibirsk, 2019. P. 101–112 (English transl.: Journal of Math. Sci., 2019. V. 239, № 3. P. 349–368).

5. Leugering G., Nazarov S.A., Slutskij A.S. The asymptotic analysis of a junction of two elastic beams // ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 2019;99 (1):e201700192

6. Chesnel L., Nazarov S.A. Non reflection and perfect reflection via Fano resonance in waveguides // Commun. Math. Sci. 2018. V. 16, № 7. P. 1779–1800.

7. Bakharev F.L., Nazarov S.A. Eigenvalue asymptotics of long Kirchhoff plates with clamped edges // Mat. Sbornik. 2019. V. 210, № 4. P. 3–26 (English transl.: Sb. Math. 2019. V. 210. № 4. P. 473–494).

8. Nazarov S.A. Strange behavior of eigenfrequencies of an elastic body with a blunted cusp // Prikl. Mat. Mekh. 2019. V. 83, № 2. P. 265–281 (English transl.: Mechanics of Solids, 2019. V. 54, № 5. P. 694–708).

9. Nazarov S.A.Waves in a plane rectangular lattice of thin elastic waveguides // Probl. mat. Analiz. № 99. Novosibirsk, 2019. P. 47–88 (English transl.: Journal of Math. Sci., 2019. V. 242, № 2. P. 227–279).

10. Nazarov S.A. Infinite Kirchhoff plate on a compact elastic foundation may have an arbitrarily small eigenvalue // Dokl. Ross. Akad. Nauk. 2019. V. 488, № 4. P. 360–364 (English transl.: Doklady Mathematics, 2019, V. 100, № 2. P. 491–495).

11. Nazarov S.A. Finite-dimensional versions of the Steklov–Poincare operator for general elliptic problems in domains with cylindrical outlets to infinity // Trudy Moskov. Mat. Obschch. 2019. V. 80, № 1. P. 1–62 (English transl.: Trans. Moscow Math. Soc. 2015. V. 80, № 1. P. 1 – 51 )

12.NazarovS.A. Trapping a wave in a curved acoustic waveguide with constant cross-section // Algebra i analiz. 2019. V. 31, № 5. P. 154–183 (English transl.: St. Petersburg Math. J. 2020. V. 31, № 5. P. 865 – 885).

13. Nazarov S.A., Orive-Illera R., Perez-Martinez V.E. On the polarization matrix for a perforated strip. In: Integral Methods in Science and Engineering: Analytic Treatment and Numerical Approximations. Eds. C. Constanda and P. Harris. N.Y.: Birkhäuser, 2019. P. 267–281.

14. Nazarov S.A. Models of riveting: asymptotic analyses of Kirchhoff plates with Sobolev point conditions // Dokl. Ross. Akad. Nauk. 2019. V. 489, № 1. P. 29–34 (English transl.: Doklady Physics, 2019, V. 64, № 11. P. 424–429).

15. Kozlov V.A., Nazarov S.A., Zavorokhin G.L.Pressure drop matrix for a bifurcation with defects // Eurasian journal of mathematical and computer applications. 2019. V. 7, № 3. P. 33–55.

16. Nazarov S.A. “Blinking” and “gliding” eigenfrequencies of oscillations of elastic bodies with blunted cuspidal sharpenings // Mat. Sbornik. 2019. V. 210, № 11. P. 129–158 (English transl.: Sb. Math. 2019. V. 210. № 11. P. 1633–1662).

17. Nazarov S.A., Orive-Illera R., Perez-Martinez M.E. Asymptotic structure of the spectrum in a Dirichlet-strip with double periodic perforations //Networks and heterogeneous media. 2019. V. 14, № 4. P. 733–757.

18.Nazarov S.A. Almost complete transmission of low frequency waves in a locally damaged elastic waveguide // Probl. mat. Analiz. № 100. Novosibirsk, 2019. P.83–121 (English transl.: Journal of Math. Sci., 2020. V. 244, № 3. P. 451–497).

19. Kozlov V. A., Nazarov S. A., Orlof A. Trapped modes in armchair graphene nanoribbons // Zap. Nauchn. Sem. St.-Petersburg Otdel. Mat. Inst. Steklov. 2019. V. 483. P. 85– 116.

20. Nazarov S. A. Scattering of low-frequency waves in infinite Kirchhoff plate // Zap. Nauchn. Sem. St.-Petersburg Otdel. Mat. Inst. Steklov. 2019. V. 483. P. 142–178.

21. Nazarov S.A. Trapping elastic waves by a semi-infinite cylinder with partly fixed surface // Sibirsk. Mat. Zh. 2020. V. 61, № 1. P. 160–174 (English transl.: Siberian Math. J. 2020. V. 61, № 1. P. 127–138).

22. Nazarov S.A. Constructing a trapped mode at low frequencies in an elastic waveguide // Funkt. Anal. i Prilozhen. 2020. V. 54, № 1. P. 41–57 (English transl.: Funct. Anal. Appl. 2020. V. 54, № 1. P. 31–44).

23. Nazarov S.A. Homogenization of Kirchhoff plate joined by rivets which are modeled by Sobolev point conditions // Algebra i analiz. 2020. V. 32, № 2.P. 143–200 (English transl.: St. Petersburg Math. J. 2021. V. 32, № 2.P. 722–779).

24. Bakharev F.L., Nazarov S.A. The discrete spectrum of an infinite Kirchhof plate in the form of a locally perturbed strip // Sibirsk. Mat. Zh. 2020. V. 61, № 2. P. 297–213 (English transl.: Siberian Math. J. 2020. V. 61, № 2. P. 233–247).

25. Chesnel L., Nazarov S.A., Pagneux V. Invisibility and perfect reflectivity in waveguides with finite length branches // SIAM J. Appl. Math. 2018. V. 78, № 4. P. 2176–2199.

26. Nazarov S.A., Taskinen J. “Blinking eigenvalues” of the Steklov problem generate the continuous spectrum in a cuspidal domain // Journal of Differential Equations. 2020. V. 269, № 4, 5. P. 2774–2797.

27. Chesnel L., Nazarov S.A., Taskinen J. Surface waves in a channel with thin tunnels at the bottom: non-reflecting underwater topography // Asymptotic Analysis. 2020. V. 118, № 1, 2. P. 81–122.

28. Nazarov S.A., Taskinen J. Essential spectrum of periodic medium with sparsely placed foreign inclusions // Pure and Applied Functional Analysis. 2020.V. 5, № 2. P. 427–455.

29. Nazarov S.A., Slutskij A.S., Taskinen J. Asymptotic analysis of an elastic rod with rounded ends // Mathematical Methodsin the Applied Sciences. 2020. V. 43. P. 6396–6415.

30. Nazarov S.A. Anomalies of scattering of acoustic waves near cutoff points of the continuous spectrum (a review) // Acoustic journal. 2020. V. 66, № 5. P. 489–506 (English transl.: Acoustical Physics. 2020. V. 66, N. 5. P. 477–494).

31. Nazarov S.A. Homogenization of Kirchhoff plates with oscillating edges and point supports// Izv. Ross. Akad. Nauk. Ser. Mat. 2020. V. 84, № 4. P. 110–168 (English transl.: Math. Izvestiya. 2020. V. 84, № 4. P. 722–779).

32. Gòmez D., NazarovS.A., Pèrez-Martinez M.-E. A Dirichlet spectral problem in domains surrounded by thin stiff and heavy bands //In: Computational and Analytic Methods in Science and Engineering. 2020. Cham: Birkhäuser, Springer. P. 101–120.

33. Gòmez D., NazarovS.A., Pèrez-Martinez M.-E. Spectral homogenization problems in linear elasticity with large reaction terms concentrated in small regions of the boundary // In: Computational and Analytic Methods in Science and Engineering. 2020. Cham: Birkhäuser, Springer. P. 121–143.

34. Nazarov S.A. Waveguide with double threshold resonance on a simple threshold // Mat. sbornik. 2020. V. 211, № 8. P. 20–67 (English transl.: Sb. Math. 2020. V. 211. № 8. P. 1080–1126).

35. Nazarov S.A. Abnormal behavior of eigenvalues of mixed boundary value problems for the Laplace operator in truncated, but long cylinders // Probl. mat. Analiz. № 105. Novosibirsk, 2020. P.83–121 (English transl.: Journal of Math. Sci., 2020. V. 250, № 2. P. 351–383).

36. Nazarov S.A. The scattering matrix at small frequencies in a junction of cylindrical acoustic waveguides // Prikl. Mat. Mekh. 2020. V. 84, № 5. P. 612–624 (English transl.: Mechanics of Solids. 2020. V. 55, № 8. P. 206–216).

37. Nazarov S.A. Threshold resonances and virtual levels in the spectrum of cylindrical and periodic waveguides // Izv. Ross. Akad. Nauk. Ser. Mat. 2020. V. 84, № 6. P. 73–130 (English transl.: Math. Izvestiya. 2020. V. 84, № 6. P. 1105–1180).

38. Nazarov S.A. Waves trapped by semi-infinite Kirchhoff plate at ultra-low frequencies //// Prikl. Mat. Mekh. 2020. V. 84, № 3. P. 327–340 (English transl.: Mechanics of Solids. 2020. V. 55, № 8. P. 194–205).

39.Bakharev F.L., Nazarov S.A. Criteria for the absence and existence of bounded solutions at the threshold frequency in a junction of quantum waveguides // Algebra i analiz. 2020. V. 32, № 6. P. 1–23 (English transl.: St. Petersburg Math. J. 2021. V. 32, № 6. P. 955–973).

40. Chiado Piat V., Nazarov S.A. Steklov spectral problems in a set with a thin toroidal hole // Partial Differential Equations in Applied Mathematics. 2020. V. 1. 100007.

41. Гомес Д., Назаров С.А., Перес М.Е. Точечное крепление пластины Кирхгофа вдоль ее кромки // Записки научн. семинаров петербург. отделения матем. института РАН. 2020. Т. 203. C. 107–136.

42. Nazarov S.A., Popoff N., Taskinen J. Plummeting and blinking eigenvalues of the Robin Laplacian in a cuspidal domain // Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 2019. P. 1–23.

43. Nazarov S.A. Asymptotic analysis of double-row riveting of Kirchhoff plates // Dokl. Ross. Akad. Nauk. Fizika, Tekhn. nauki. 2020. V. 495. P. 57–62 (English transl.: Doklady Physics. 2020. V. 65, № 12. P. 442–446).

44. Leugering, G., Nazarov S.A., Slutskij A.S., Taskinen J. Asymptotic analysis of a bit brace shaped junction of thin rods // ZAMM. 2020. V. 100. e201900227

45. Gòmez D., Nazarov S.A., Pèrez-Martinez M.-E. Asymptotics for spectral problems with rapidly alternating boundary conditions on a strainer Winkler foundation// Journal of Elasticity. 2020. V. 142. P. 89–120.

46. Chiado Piat V., Nazarov S.A. Mixed boundary value problems in singularly perturbed two-dimensional domains with the Steklov spectral condition // Probl. mat. Analiz. № 106. Novosibirsk, 2020. P.91–124 (English transl.: Journal of Math. Sci., 2020. V. 251, № 5. P. 655–695).

47. Gòmmez D., Nazarov S.A., Pèrez-Martinez M.-E. Localization effects for Dirichlet problems in domains surrounded by thin stiff and heavy bands // Journal of Differential Equations. 2021. V. 270. P. 1160–1195.

48. Nazarov A., Nazarov S., Zavorokhin G. On symmetric wedge mode of an elastic solid // Euro. Journal of Applied Mathematics. 2021. 23 p.

49. Nazarov S.A., Chesnel L. Anomalous wave transmission through a thin channel connecting two acoustic waveguides // Dokl. Ross. Akad. Nauk. Fizika, Tekhn. nauki. 2021. V. 496. P. 31–36 (English transl.:Doklady Physics. 2021. V. 66, № 1. P. 45–50).

50. Nazarov S.A., Taskinen J. Pathology of essential spectra of elliptic problems in periodic family of beads threaded by a spoke thinning at infinity // Rend. Lincei Mat. Appl. 2020. V. 31. P. 937-–967.

51. Nazarov S.A., Chesnel L. Anomalies of propagation of acoustic waves in two semi-infinite cylinders connected by a thin flattened canal // Zh. Vychisl. Mat. i Mat. Fiz. 2021. V. 61, № 4. P. 666–683 (English transl.: Comput. Math. and Math. Physics. 2021. V. 61, № 4. P. 646–663).

52. Nazarov S.A., Taskinen J. Asymptotics of the spectrum of the mixed boundary value problem for the Laplace operator in a thin spindle-shaped domain // Algebra i analiz. 2021. V. 33, № 2.P. 136-196 (English transl.: St. Petersburg Math. J. 2022. V. 33, № 2. ).

53. Chesnel L., Nazarov S.A. Abnormal acoustic transmission in a waveguide with perforated screens // Comptes Rendus Mècanique. 2021. V. 349, № 1. P. 9–19.

54. Chesnel L., Nazarov S.A. Almost complete transmission of waves through perforated cross-walls in a waveguide with Dirichlet boundary condition // Sibirsk. Mat. Zh. 2020. V. 62, № 2. P. 339–361 (English transl.: Siberian Math. J. 2020. V. 62, № 2. P. 272–291).

55. Nazarov S.A. The essence of “black holes” for elastic waves in solids with cuspidal sharpening // Dokl. Ross. Akad. Nauk. Fizika, Tekhn. nauki. 2021. V. 498. P. 57–61 (English transl.:Doklady Physics. 2021. V. 66, № 6. P. 182–185).

56. Nazarov S.A. Models of elastic joint of a plate with rods based on Sobolev point conditions and self-adjoint extensions of differential operators // Differentsial'nye Uravneniya. 2021. V. 57, № 5. P. 700–716 (English transl.: Differential equations. 2021. V. 57, № 5. P. 683–699).

57. Ghosh A., Kozlov V.A., NazarovS.A. Modified Reynolds equation for steady flow through a curved pipe // J. Math. Fluid Mech. 2021. 23:29. 1422-6928/21/020001-22 (online)

58. Chiadò Piat V., D’Elia L., Nazarov S.A. The stiff Neumann problem: Asymptotic specialty and “kissing” domains // Asymptotic Analysis. Online: 5 May 2021. P. 1–36.

59. Nazarov S.A. Rayleigh waves in a homogeneous isotropic half-planewith a periodic edge //Dokl. Ross. Akad. Nauk. Fizika, Tekhn. nauki. 2021. V. 499. P. 36–42 (English transl.:Doklady Physics. 2021. V. 66, № 8. P. 223–228).

60. Nazarov S.A. On the eigenvalues and eigenfunctions of the Dirichlet and Neumann problems in a domain with perforated partitions // Differentsial'nye Uravneniya. 2021. V. 57, № 6. P. 752–768 (English transl.: Differential equations. 2021. V. 57, № 6. P. 736–752).

61. Gòmez D., Nazarov S.A., Orive-Illera R., Pèrez-Martinez M.E. Remark on justification of asymptotics of spectra of cylindrical waveguides with periodic singular perturbations of boundary and coefficients // Probl. mat. Analiz. № 111. Novosibirsk, 2021. P. 43–65 (English transl.: Journal of Math. Sci., 2021. V. 257, № 5. P. 597–623).

62. Nazarov S.A. Trapping of waves in semiinfinite kirchhoff plate with periodically

damaged edge // Probl. mat. Analiz. № 111. Novosibirsk, 2021. P.119–136 (English transl.: Journal of Math. Sci., 2021. V. 257, № 5. P. 684–704).

63. Nazarov S.A. Propagating and standing Rayleigh waves near rivet chainsconnecting Kirchhoff plates // Sibirsk. Mat. Zh. 2021. V. 62, № 6. P. 1084–1099 (English transl.: Siberian Math. J. 2020. V. 62, № 6. P. 1339–1356).

64. Nazarov S.A. The preservation of threshold resonances and the splitting off of the eigenvalues from the threshold of the continuous spectrum of quantum waveguides // Mat. Sbornik. 2021. V. 212, № 7. P. 965–1000 (English transl.: Sb. Math. 2021. V. 212. № 7. P. 84–121).

65. Chesnel L., Nazarov S.A. Design of an acoustic energy distributor using thin resonant slits // Proc. Royal Soiety. 2021. V. 477, 2247-20200896.

66. Nazarov S.A., Taskinen J. A model of a plane deformation state of a two-dimensional plate with small almost periodic clamped parts of the edge // Zap. Nauchn. Sem. St.-Petersburg Otdel. Mat. Inst. Steklov. 2021. V. 506. P. 130–174.

67. Nazarov S.A., Ruotsalainen K.M., Uusitalo P.J. Scattering coefficients and threshold resonances in a waveguide with inflating resonator // Zap. Nauchn. Sem. St.-Petersburg Otdel. Mat. Inst. Steklov. 2021. V. 506. P. 175–210.

68. Kozlov V.A., NazarovS.A., Zavorokhin G. Modeling of fluid flow in a flexible vessel with elastic walls // J. Math. Fluid Mech. 2021. 23:79. 1422-6928/21/030001-29

69. Nazarov S.A., Chesnel L. Transmission and trapping of waves in an acoustic waveguide with perforated cross-walls// Prikl. Mat. Mekh. 2022. V. 86, № 1. P. 35–65 (English transl.: Fluid Dynamics. 2021. V. 56, № 8. P. 1070–1093).

70. Cancedda A., Chiad\`{o Piat V., Nazarov S.A., Taskinen J. Spectral gaps for the linear water-wave problem in a channel with thin structures // Mathematische Nachrichten. 2022. V. 295. P. 657–682.

71. D'Elia L., Nazarov S.A. Gaps in the spectrum of two-dimensional square packing of stiff disks // Applicable analysis. Published online: 02 Feb 2022

72. Nazarov S.A. Concentration of eigenfrequencies of elastic bodies with blunted cuspidal sharpening // Acoustic journal. 2022. V. 68, № 3. P. 249–260 (English transl.: Acoustical Physics. 2020. V. 68, N. 3. P. 215–226).

73. Nazarov S.A. Rayleigh waves for elliptic systems in domains with periodic boundaries // Differentsial'nye Uravneniya. 2022. V. 58, № 5. P. 638–655 (English transl.: Differential equations. 2021. V. 58, № 5. P. 63–648).

74. Nazarov S.A. Abnormal transmission of elastic waves through a thin ligament connecting two planar isotropic waveguide // Prikl. Mat. Mekh. 2022. V. 86, № 6. P. 975–994 (English transl.: Mechanics of Solids. 2022. V. 57, № 8. P. 1908–1922).

75. Gòmez D., NazarovS.A., Orive-Illera R., Pèrez-Martinez M.-E. Asymptotics for the spectrum of a Floquet-parametric family of homogenization problems associated with a Dirichlet waveguide // In:IMSE proceedings: Integral Methods in Science and Engineering – Applications in Theoretical and Practical Research. 2022. Cham: Birkhäuser, Springer. P. 95–111.

76. Gòmez D., NazarovS.A., Orive-Illera R., Pèrez-Martinez M.-E. Spectral gaps in a double-periodic perforated Neumann waveguide // Asymptotic Analysisю 2023. V. 131. P. 385–44.

77. Chesnel L., Heleine G., Nazarov S.A. Acoustic passive cloaking using thin outer resonators // ZAMP. 2022. V. 73:98. published online April 18, 2022.

890
Используя этот сайт, вы соглашаетесь с тем, что мы используем файлы cookie.