ipmash@ipme.ru | +7 (812) 321-47-78
пн-пт 10.00-17.00
Институт Проблем Машиноведения РАН ( ИПМаш РАН ) Институт Проблем Машиноведения РАН ( ИПМаш РАН )

Institute for Problems in Mechanical Engineering
of the Russian Academy of Sciences

Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences

Ballistic resistance of ceramic metallic target for varying layer thicknesses

Autors:
M.K. Khan , M.A. Iqbal , c.o.p.a.m.s. V. Bratov , d.o.p.a.m.s. A.V. Morozov , N.K. Gupta ,
Pages:
159-169
Annotation:

The ballistic behaviour of a bi-layer ceramic-metal target against steel projectile with varying layer thicknesses has been investigated using a three-dimensional finite element model. The bi-layer target was made of alumina 99.5 % ceramic front layer and aluminium 2024-T3 metallic back layer with an areal dimension of 100×100 mm and the thickness of both layers were varied, with the total thickness of the composite being kept as 10 mm and 20 mm. A steel 4340 cylindrical blunt-nosed projectile was used with 30 grams mass and 10.9 mm diameter. The Johnson-Holmquist 2 (JH-2) constitutive model was used for reproducing the high strain behavior of alumina and Johnson-Cook (JC) model was used for aluminium alloy and steel. The impact velocity of the projectile was varied in the range 200-700 m/s for 10 mm total thickness and 500-800 m/s in the case of 20 mm total thickness for studying the effects of thickness ratios on ballistic resistance of the bi-layer target. The residual velocities were compared and the ratio of front to back layer providing the highest ballistic limit velocity was found for both cases.

File (pdf):
18:18
533
Используя этот сайт, вы соглашаетесь с тем, что мы используем файлы cookie.