ipmash@ipme.ru | +7 (812) 321-47-78
пн-пт 10.00-17.00
Институт Проблем Машиноведения РАН ( ИПМаш РАН ) Институт Проблем Машиноведения РАН ( ИПМаш РАН )

Institute for Problems in Mechanical Engineering
of the Russian Academy of Sciences

Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences

Artificial neural network surrogates for impact problem simulations

Autors:
Yuyi Zhang , Andrey Logachov , Aleksandr Smirnov , d.o.p.a.m.s. Nikita Kazarinov ,
Pages:
200–213
Annotation:

This study investigates the use of artificial neural network (ANN)-based surrogate models for predicting residual velocities in impact problems under varying conditions. Building upon the combination of FEM simulations and incubation time fracture criteria, this paper extends the methodology by exploring multiple ANN architectures tailored to capture complex impact dynamics, including cases involving composite targets and variable impactor velocities. Special attention is given to identifying failure modes of the FEM model. The results demonstrate that appropriately configured ANN surrogates can effectively reduce computational costs and achieve accurate predictions in the case of high-velocity impacts.

File (pdf):
01:23
11
Используя этот сайт, вы соглашаетесь с тем, что мы используем файлы cookie.